

HOAS on top of FOAS

Andrei Popescu

Joint work with Elsa Gunter and Chris Osborn

University of Illinois at Urbana-Champaign

Motto (and excuse)

“When you try to convey an idea, do not aim
at being complete. Rather, select from that idea

scattered things you like most.”

 ~ Jorge Luis Borges

Overview

• Motivation: why (still) study syntax with
bindings?

• HOAS recalled

• HOAS on top of FOAS

• Case study: a formal proof of strong
normalization for System F in Isabelle/HOL

Overview

• Motivation: why (still) study syntax with
bindings?

• HOAS recalled

• HOAS on top of FOAS

Omitted from the presentation:
• Case study: a formal proof of strong

normalization for System F in Isabelle/HOL

Overview

• Motivation: why (still) study syntax with
bindings?

• HOAS recalled

• HOAS on top of FOAS

Terms and alpha-equivalence

• Raw terms of λ-calculus:

X ::= Var x | App X Y | Lam x X

• Let ≡ be the alpha- (naming-) equivalence

relation on raw terms

Interpretation in semantic domains

• APP : D D D

• LAM : (D D) D

• env = (var D)

• [[_]] _ : Term Env D, defined
recursively on the first argument, by:
– [[x]] ρ = ρ x
– [[App X Y]] ρ = APP ([[X]] ρ) ([[Y]] ρ)
– [[Lam x X]] ρ = LAM (λ d. X [[ρ (x := d)]])

Exercise

• It is “intuitively obvious” that:
– Interpretation respects alpha:

 ∀ X X’. X ≡ X’ implies [[X]] = [[X’]]
– The following “substitution lemma” holds:

[[X [Y / y]]] ρ = [[X]] (ρ (y := ([[Y]] ρ)))

Exercise

• It is “intuitively obvious” that:
– Interpretation respects alpha:

 ∀ X X’. X ≡ X’ implies [[X]] = [[X’]]
– The following “substitution lemma” holds:

[[X [Y / y]]] ρ = [[X]] (ρ (y := ([[Y]] ρ)))

• Nobody wants to prove these

Exercise

• It is “intuitively obvious” that:
– Interpretation respects alpha:

 ∀ X X’. X ≡ X’ implies [[X]] = [[X’]]
– The following “substitution lemma” holds:

[[X [Y / y]]] ρ = [[X]] (ρ (y := ([[Y]] ρ)))

• Nobody wants to prove these

• But some have to (those who formalize)

Exercise

Please send me solution to uuomul@yahoo.com
• May use any (correct) definition of alpha-

equivalence
• Or may assume alpha-equivalence (and also

swapping, substitution, free variables, etc.)
already defined

• May assume any basic property of these (e.g.,
anything in the equational theory of alpha)

• May consult any textbook or research paper
A. M. Pitts: Alpha-structural recursion and induction, J. ACM, 2006.

mailto:uuomul@yahoo.com

Overview

• Motivation: why (still) study syntax with
bindings?

• HOAS recalled

• HOAS on top of FOAS

Higher-Order Abstract Syntax

• Represent object systems (e.g., logics,
operational semantics of PL, etc.) in a fixed
logical framework

• Object-level binding and inference mechanisms
are captured by corresponding ones in the
logical framework

Higher-Order Abstract Syntax

• Represent object system (e.g., logic, operational
semantics of PL, etc.) in a fixed logical
framework

• Object-level binding and inference mechanisms
are captured by corresponding ones in the
logical framework

• Why?

Higher-Order Abstract Syntax

• Represent object system (e.g., logic, operational
semantics of PL, etc.) in a fixed logical
framework

• Object-level binding and inference mechanisms
are captured by corresponding ones in the
logical framework

• Why?
• Formalize/implement tedious “details” once and

for all, when defining the logical framework

HOAS and meta-reasoning

• Originally: for reasoning in the object systems
Edinburgh LF, Generic Isabelle

• Later: meta-theory of the object systems too
(i.e., reason about the object system)

TWELF, Abella, Hybrid, Delphin, ATS, Beluga

• Subtle problems and challenges arise when
combining HOAS with meta-reasoning

Running example: Syntax

First-order syntax (up to α):

• Curry-style: no type annotations

• Data variables x, y, z, data terms X,Y, Z,
data abstractions A, B

X ::= Var x | App X Y | Lam A A ::= x . X

• Type variables tx, ty, tz, type terms tX, tY,
tZ, type abstractions tA, tB

tX ::= Tvar tx | Arr tX tY

Running example:
β-reduction for untyped λ-calculus

App (Lam (x . Y)) X ~~> Y [X / x] (Beta)

 Y ~~> Y’
 --(Xi)

 Lam (x . Y) ~~> Lam (x . Y’)

X ~~> X’
 --------------------------------(App-Left)

 App X Y ~~> App X’ Y

Running example:
Curry-style simple typing

. Γ |- Y : tY
-------------------------- [x fresh Γ] -------------------------------[x fresh Γ]
 Γ, x : tX |- x : tX (Asm) Γ, x : tX |- Y : tY (Weak)

 Γ, x : tX |- Y : tY

 -- [x fresh Γ]
 Γ |- Lam (x . Y) : Arr tX tY (Arr-I)

Γ |- Z : Arr tX tY Γ |- X : tX
 --(Arr-E)

Γ |- App Z X : tY

HOAS representation

• In pure intuitionistic HOL (similarly, in LF)

• Declare
– An HOL type: tm
– Constants app : tm tm tm

lam : (tm tm) tm

beta : tm tm bool

• State axioms, e.g.:

beta (app (lam (λ x : tm. Y x)) X) (Y X)

HOAS idea rephrased

For an “observer” from inside the logical
framework:

• Object bindings are taken ad literam!

• E.g., the term Lam x . (Var x) is not
``syntax”, but is actually the function λX. X

HOAS idea rephrased

For an “observer” from inside the logical
framework:

• Object bindings are taken ad literam!

• E.g., the term Lam x . (Var x) is not
“syntax”, but is actually the function λX. X

• Well, almost: it is really lam (λX. X)

(recall lam : (tm tm) tm)

Overview

• Motivation: why (still) study syntax with
bindings?

• HOAS recalled

• HOAS on top of FOAS

HOAS on top of FOAS

• Stronger (meta-)logical-framework: strong
enough to develop general mathematics (e.g.,
the logic of Isabelle/HOL)

• Terms are still “syntax” (defined in the standard
way)

• HOAS comes not as a “representation”, but as a
higher-order view of the same syntax

• Thus, e.g., Lam x x is both ``itself” (as a finite
piece of syntax) and lam (λX. X)

HOAS view of syntax:
Abstractions as functions

• FOAS definition/construction: A = (x . X)
• HOAS treatment: A _ Y = “A applied Y”,

defined to be X [Y / x]
• May regard abstractions as forming a

subspace of tm tm
• This view accommodates:

– HOAS structural recursion principles (omitted
from this presentation)

– a certain way to represent inference relations

HOAS representation of β-reduction

 App (Lam (x . Y)) X ~~> Y [X / x] (Beta-FOAS)

App (Lam A) X ~~> A _ X (Beta-HOAS)

 Y ~~> Y’
 --------------------------------------(Xi-FOAS)

 Lam (x . Y) ~~> Lam (x . Y’)

 ∀ X. A _ X ~~> A’ _ X
 ------------------------------(Xi-HOAS)

 Lam A ~~> Lam A’

HOAS representation of typing

∀ Γ - (typing) context, i.e., list of pairs
(data variable, type term):
 x1 : tX1, …, xn : tXn

∀∆ - HOAS context, i.e., list of pairs
(data term, type term):
 X1 : tX1, …, Xn : tXn

• Note: we close under substitution

HOAS representation of typing

 Γ, x : tX |- Y : tZ

 ----------------------------------- [x fresh for Γ]

 Γ |- Lam (x . Y) : Arr tX tZ (Arr-I-FOAS)

 ∀ X. ∆, X : tX ||- A _ X : tZ

 -------------------------------------(Arr-I-HOAS)

∆ ||- Lam A : Arr tX tZ

How HOAS is this?

• No more freshness side conditions √
• Object-level bindings pushed to the

meta level √
• Meta-reasoning capabilities kept

intact √
• Also push inference contexts to the

meta level?

Parenthesis: pure HOAS
representation

• In intuitionistic HOL:
• Declare tpOf : tm → tp → bool
• State axioms, such as:

 ∀ X. tpOf X tX ⇒ tpOf (A X) tY

 tpOf (Lam A) (Arr tX tY)
to capture
 Γ, x : tX |- Y : tZ

 -------------------------------------- [x fresh Γ]
 Γ |- Lam (x . Y) : Arr tX tZ (Arr-I)

“Context-free” induction principle
for typing

If H : tm → tp → bool s.t.:
∀ X. H X tX ⇒ H (A _ X) tZ

 ---(ArrI-H)

 H (Lam A) (Arr tX tZ)

etc., then ∀ X tX. [] ||- X : tX ⇒ H X tX

(Higher degree of HOAS – not only bindings and
substitution, but also inference contexts are
pushed to the meta-level)

Conclusions

• Worth still studying syntax with bindings

• HOAS:
– Exterior view: capture object-level bindings by

bindings in the logical framework
– Inner view: syntactic bindings become true

semantic bindings

• HOAS technique available atop of FOAS

HOAS on top of FOAS

• FOAS operators still available if needed

• Purely definitional development of HOAS

• General-purpose logical framework
(standard mathematics)

• Adequacy statable and provable in the
logical framework itself

Credits and very related work

• HOAS on top of FOAS ideas previously
employed in the Hybrid logical framework

(work by A. Momigliano, A. Felty, S. Ambler, R. L.
Crole, and others)

• A quasi-HOAS proof of strong normalization for
System F previously given in the ATS logical
framework

(work by C. Chen, H. Xi, K. Donnelly and others)

Thank you

	HOAS on top of FOAS
	Motto (and excuse)
	Overview
	Slide 4
	Slide 5
	Terms and alpha-equivalence
	Interpretation in semantic domains
	Exercise
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Higher-Order Abstract Syntax
	Slide 14
	Slide 15
	HOAS and meta-reasoning
	Running example: Syntax
	Running example: -reduction for untyped -calculus
	Running example: Curry-style simple typing
	HOAS representation
	HOAS idea rephrased
	Slide 22
	Slide 23
	Slide 24
	HOAS view of syntax: Abstractions as functions
	HOAS representation of -reduction
	HOAS representation of typing
	Slide 28
	How HOAS is this?
	Parenthesis: pure HOAS representation
	“Context-free” induction principle for typing
	Conclusions
	Slide 33
	Credits and very related work
	Thank you

