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Shapes filled with content from a set A = {ay, as, ...}
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Natural Functors on Set

F:Set — Set is a natural functor if:
It comes with a set of shapes, say
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a filling with content from A, say
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Functorial Action (Mapper)

A FA s
N
aq a9 as
f Fr
PARN
B FB far fay fas

Keep the same shape
Apply f to the content
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F : Set — Set

For all A i B, we have F A Zf F B such that:

Fidg =idra

Functorialit
F(gof):FgoFf y
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Bottom Line: Natural Functors

F : Set — Set

For all A i B, we have F A F—f> F B such that:

Fidg =idpa

Functorialit
F(gof)=FgoFf /

Fatoms 4

For all A, we have FA —" P A such that, for all
A L B:

image f o Fatoms4 = Fatomsp oimage f  Naturality
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Ff (Leftn) =Leftn  Ff (Righta) = Right (f a)
Fatoms (Leftn) =@  Fatoms (Righta) = {a}

Ff(ai-as-...cay)=far-fas...- fa,
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lterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: ] v A ry

7N\ AN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Y
A/L\'ﬁ
/ \ YARN

= v

H v 1

Define Ir = the set of all such finitary couplings
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ctor and dtor are mutually inverse bijections
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| is the initial F-algebra
f = iters
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Bottom line for I¢

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:

ctor bijection IlF = the datatype of F

Iteration (Initial Algebra Property): For all (A,s:F A — A),
there exists a unique function iter, such that

F iters

FlF—>FA

I A

iterg

Induction: Given any predicate ¢ on Ig

Vo e F lg. (Vie Fatoms x. ¢ i) = ¢ (ctor x)

VZEIFQOI
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Example of Datatype

Let B be a fixed set. FA={+}+BxA
The shapes of F:  Left » Right (b, ) for each be B

Or, graphically: =, o, for each be B

Who is Ig?
Its elements have the form
Right(by, ..., Right(b,, Right (Left x))...)

l.e., essentially lists by -...-b,
So ||: = LiStB
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Example of Datatype: List
Bfixed FA={x}+BxA f=iter, Ig=Listg
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ctor

[
F 7

Va e F lg. f (ctor x) =s ((F f) x)
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Example of Datatype: List
Bfixed FA={+}+BxA f=itery Ig=Listg

Nil = ctor (Left *) Cons(b, i) = ctor (Right (b,17))

Define: N4 _ 5 (Left +)  Cons™(b, a) = 5 (Right (b, a))
B x| il BxA
Cons Cons™
Nil € I - AsNil?
£ Nil = Nl | We obtain standard list iteration! |

Vbe B, icle. f(Cons (b,i)) = Cons™ (b, fi)
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Bfixed FA={x}+BxA |g=Listg
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Vo eF lg. (Vie Fatoms x. ¢ i) = ¢ (ctor x)

VZE'F(pI



Example of Datatype: List
Bfixed FA={x}+BxA Ir=Listg

Left x »@, Right (b,i) —{i}

Pl

{+*}+BxlIg

ctor

IF

Vo eF lg. (Vie Fatoms x. ¢ i) = ¢ (ctor x)

VZ€|F(pI



Example of Datatype: List
Bfixed FA={x}+BxA Ir=Listg

Nil = ctor (Left ) Cons(b, %) = ctor (Right (b, 7))

Left x »@, Right (b,i) —{i}

{*}-I—BX'F P'F

ctor

IF

Vo eF lg. (Vie Fatoms x. ¢ i) = ¢ (ctor x)
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Example of Datatype: List
Bfixed FA={+}+BxA Ig=Listg

Nil = ctor (Left x) Cons(b, 1) = ctor (Right (b,17))

Left + »@, Right (b,5) —{i}

{*}+B><||: PlF

ctor

Ir

¢ Nil |Obtain standard list induction!]
Vbe B, i€elg. pi= p (Cons(b,i))
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lterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: B Vv o A &

LN /I

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Define Jr = the set of all such (possibly) infinitary couplings
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End of Part |

Many thanks for your attention
See you in 30 minutes
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