A Concrete Introduction to Abstract Inductive Datatypes

Andrei Popescu

Middlesex University
School of Science and Technology
Foundations of Computing Group

See also

www.andreipopescu.uk/resourcesForStudents/introductionToCodatatypes.pdf

www.andreipopescu.uk/resourcesForStudents/codatatypesInIsabelleHOL.pdf

www.andreipopescu.uk/slides/ESOP2015-slides.pdf

Preliminariers: It's All About Shape and Content

Shapes

Preliminariers: It's All About Shape and Content

Shapes

Shapes filled with content from a set $A = \{a_1, a_2, \ldots\}$

Set = the class of all sets

 $F : Set \rightarrow Set$ is a natural functor if:

F: Set → Set is a natural functor if: It comes with a set of shapes

 $F : Set \rightarrow Set$ is a natural functor if:

It comes with a set of shapes, say

 $F : Set \rightarrow Set$ is a natural functor if:

It comes with a set of shapes, say

Each element $x \in F A$ consists of:

a choice of a shape

 $F : Set \rightarrow Set$ is a natural functor if:

It comes with a set of shapes, say

Each element $x \in F A$ consists of:

a choice of a shape, say

F: Set → Set is a natural functor if: It comes with a set of shapes, say

Each element $x \in FA$ consists of:

a choice of a shape, say

a filling with content from A

F: Set → Set is a natural functor if: It comes with a set of shapes, say

Each element $x \in F A$ consists of:

a choice of a shape, say

a filling with content from A, say

 $FA = \mathbb{N} \times A$

$$\mathsf{F} A = \mathbb{N} \times A \qquad \qquad \stackrel{\bullet_0}{|} \qquad \qquad \stackrel{\bullet_1}{|} \qquad \qquad \stackrel{\bullet_2}{|} \qquad \dots$$

$$\mathsf{F} A = \mathbb{N} \times A \qquad \qquad \begin{vmatrix} \bullet_0 & \bullet_1 & \bullet_2 \\ & & | & \\ a & & a \end{vmatrix} \qquad \dots$$

$$\mathsf{F} A = \mathbb{N} \times A \qquad \qquad \begin{matrix} \bullet_0 \\ \\ \\ a \end{matrix} \qquad \qquad \begin{matrix} \bullet_1 \\ \\ \\ a \end{matrix} \qquad \qquad \begin{matrix} \bullet_2 \\ \\ \\ a \end{matrix} \qquad \qquad \dots$$

$$FA = \mathbb{N} + A$$

$$FA = \mathbb{N} \times A \qquad \begin{vmatrix} \bullet_0 & \bullet_1 & \bullet_2 \\ a & a & a \end{vmatrix} \qquad \dots$$

$$FA = \mathbb{N} + A \qquad | \bullet_0 \qquad \bullet_1 \qquad \dots$$

$$FA = \mathbb{N} \times A \qquad \qquad \begin{vmatrix} \bullet_0 & \bullet_1 & \bullet_2 \\ a & a & a \\ & & a \end{vmatrix} \qquad \dots$$

$$FA = \mathbb{N} + A \qquad \qquad \begin{vmatrix} \bullet_0 & \bullet_1 & \bullet_2 \\ \bullet & & & a \\ & & & a \end{vmatrix} \qquad \bullet_1 \qquad \dots$$

$$FA = \mathbb{N} \times A \qquad \qquad \begin{vmatrix} \bullet_0 & \bullet_1 & \bullet_2 \\ \vdots & \vdots & \vdots \\ a & a & a \end{vmatrix} \qquad \dots$$

$$FA = \mathbb{N} + A \qquad \qquad \begin{vmatrix} \bullet_0 & \bullet_1 & \bullet_2 \\ \vdots & \vdots & \vdots \\ \bullet & \bullet & \bullet \end{vmatrix} \qquad \blacksquare_0 \qquad \blacksquare_1 \qquad \dots$$

$$FA = List A$$

$$FA = \mathbb{N} \times A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$\begin{vmatrix}
a & a & a \\
a & a
\end{vmatrix}$$

$$A = \mathbb{N} + A$$

$$FA = \mathbb{N} \times A$$

$$\begin{vmatrix} \bullet_0 \\ a \end{vmatrix}$$

$$\begin{vmatrix} \bullet_1 \\ a \end{vmatrix}$$

$$\begin{vmatrix} \bullet_2 \\ a \end{vmatrix}$$

$$\begin{vmatrix} \bullet_1 \\ a \end{vmatrix}$$

$$\begin{vmatrix} \bullet_2 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_1 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_2 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_3 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_2 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_1 \end{vmatrix}$$

$$\begin{vmatrix} \bullet_4 \\ a_$$

$$FA = \mathbb{N} \times A$$

$$\begin{vmatrix} \bullet_0 \\ a \end{vmatrix}$$

$$\begin{vmatrix} \bullet_1 \\ a \end{vmatrix}$$

$$FA = \mathbb{N} \times A$$

$$\begin{vmatrix} \bullet_0 \\ a \\ a \end{vmatrix}$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \end{vmatrix}$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\blacksquare_1 \dots$$

$$A$$

$$FA = \text{List } A$$

$$\bullet_0 \qquad \begin{vmatrix} \bullet_1 \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a_1 \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$= 0$$

$$\begin{vmatrix} \bullet_1 \\ a \\ a \\ a \end{vmatrix}$$

$$=$$

 $FA = Lazy_List A$?

$$FA = Lazy_List A = List A$$

$$\bullet_0 \qquad \bullet_1 \qquad \bullet_2 \qquad \bullet_3 \qquad \cdots$$

 $FA = Lazy_List A = List A \cup Stream A$

Functorial Action (Mapper)

Keep the same shape Apply f to the content

Commutation with the Identity Function

Commutation with the Identity Function

Commutation with Function Composition

 $F: Set \rightarrow Set$

For all $A \stackrel{f}{\rightarrow} B$, we have $FA \stackrel{Ff}{\rightarrow} FB$ such that:

 $F id_A = id_{FA}$ $F (g \circ f) = F g \circ F f$

$$F: Set \rightarrow Set$$

For all $A \xrightarrow{f} B$, we have $F A \xrightarrow{F f} F B$ such that:

$$F id_A = id_{FA}$$

 $F (g \circ f) = F g \circ F f$ Functoriality

 $FA \xrightarrow{\mathsf{Fatoms}_A} \mathcal{P}A$

 $\{f a_1, f a_2, f a_3\}$

 $F : Set \rightarrow Set$

For all $A \stackrel{f}{\rightarrow} B$, we have $FA \stackrel{Ff}{\longrightarrow} FB$ such that:

$$F id_A = id_{FA}$$

 $F (g \circ f) = F g \circ F f$

Functoriality

 $F: Set \to Set$

For all $A \stackrel{f}{\to} B$, we have $FA \stackrel{Ff}{\longrightarrow} FB$ such that:

$$F id_A = id_{FA}$$

 $F (g \circ f) = F g \circ F f$ Functoriality

For all A, we have $FA \xrightarrow{Fatoms_A} \mathcal{P}A$ such that, for all $A \xrightarrow{f} B$:

 $image f \circ Fatoms_A = Fatoms_B \circ image f$

 $F: Set \to Set$

For all $A \stackrel{f}{\to} B$, we have $FA \stackrel{Ff}{\longrightarrow} FB$ such that:

$$F id_A = id_{FA}$$

 $F (g \circ f) = F g \circ F f$ Functoriality

For all A, we have $FA \xrightarrow{Fatoms_A} \mathcal{P}A$ such that, for all $A \xrightarrow{f} B$:

 $image f \circ Fatoms_A = Fatoms_B \circ image f$ Naturality

Bottom Line: Natural Functors

 $F : Set \rightarrow Set$

For all $A \stackrel{f}{\rightarrow} B$, we have $FA \stackrel{Ff}{\longrightarrow} FB$ such that:

$$F id_A = id_{FA}$$

 $F (g \circ f) = F g \circ F f$ Functoriality

For all A, we have $FA \xrightarrow{Fatoms_A} \mathcal{P}A$ such that, for all $A \xrightarrow{f} B$:

 $image f \circ Fatoms_A = Fatoms_B \circ image f$ Naturality

 $A \xrightarrow{f} B$

 $A \xrightarrow{f} B$ $F \xrightarrow{F f} F \xrightarrow{B}$

 $A \xrightarrow{f} B$ $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{Fatoms} \mathcal{P}A$

$$A \stackrel{J}{\longrightarrow} B$$

 $A \xrightarrow{f} B$ $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{Fatoms} \mathcal{P}A$

$$FA = \mathbb{N} \times A$$

$$A \xrightarrow{J} B$$

 $A \xrightarrow{f} B$ $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{Fatoms} \mathcal{P}A$

$$FA = \mathbb{N} \times A$$

 $\mathsf{F} f(n, \mathbf{a}) = (n, f \mathbf{a})$

$$A \xrightarrow{J} B$$

 $A \xrightarrow{f} B$ $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{Fatoms} \mathcal{P}A$

$$FA = \mathbb{N} \times A$$

 $\mathsf{F} f(n,a) = (n,fa)$ Fatoms $(n, \mathbf{a}) = \{\mathbf{a}\}$

$$A \xrightarrow{J} B$$

 $A \xrightarrow{f} B$ $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{Fatoms} \mathcal{P}A$

$$FA = \mathbb{N} \times A$$

 $\mathsf{F} f(n,a) = (n,fa)$ Fatoms $(n, \mathbf{a}) = \{\mathbf{a}\}$

$$FA = \mathbb{N} + A$$

$$A \xrightarrow{f} B$$
 $F \xrightarrow{A} F B$ $F \xrightarrow{A} Fatoms \mathcal{P} A$

$$FA = \mathbb{N} \times A$$

$$Ff(n, a) = (n, fa)$$

$$Fatoms(n, a) = \{a\}$$

$$FA = \mathbb{N} + A$$
 $Ff (Left n) = Left n$ $Ff (Right a) = Right (fa)$

$$A \xrightarrow{f} B$$
 $F \xrightarrow{A} F \xrightarrow{B}$ $F \xrightarrow{A} F \xrightarrow{\text{Fatoms}} \mathcal{P} \xrightarrow{A}$

$$FA = \mathbb{N} \times A$$

$$Ff(n, a) = (n, f a)$$

$$Fatoms(n, a) = \{a\}$$

$$\mathsf{F}\,A = \mathbb{N} + A \qquad \qquad \mathsf{F}f\,\,(\mathsf{Left}\,n) = \mathsf{Left}\,n \qquad \mathsf{F}f\,\,(\mathsf{Right}\,a) = \mathsf{Right}\,(f\,a) \\ \mathsf{Fatoms}\,\,(\mathsf{Left}\,n) = \varnothing \qquad \mathsf{Fatoms}\,\,(\mathsf{Right}\,a) = \{a\}$$

$$A \xrightarrow{f} B$$
 $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{\text{Fatoms}} \mathcal{P} A$ $FA = \mathbb{N} \times A$ $Ff(n, a) = (n, fa)$ Fatoms $(n, a) = \{a\}$

$$\mathsf{F}\,A = \mathbb{N} + A \qquad \qquad \mathsf{F}f\,(\mathsf{Left}\,n) = \mathsf{Left}\,n \qquad \mathsf{F}f\,(\mathsf{Right}\,a) = \mathsf{Right}\,(f\,a)$$

$$\mathsf{Fatoms}\,(\mathsf{Left}\,n) = \varnothing \qquad \mathsf{Fatoms}\,(\mathsf{Right}\,a) = \{a\}$$

FA = List A

$$A \xrightarrow{f} B$$
 $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{\text{Fatoms}} \mathcal{P} A$ $FA = \mathbb{N} \times A$ $Ff(n, a) = (n, fa)$ $Fatoms(n, a) = \{a\}$

$$\mathsf{F}\, A = \mathbb{N} + A \qquad \qquad \mathsf{F}f \, (\mathsf{Left}\, n) = \mathsf{Left}\, n \qquad \mathsf{F}f \, (\mathsf{Right}\, a) = \mathsf{Right} \, (f\, a) \\ \mathsf{Fatoms} \, (\mathsf{Left}\, n) = \varnothing \qquad \mathsf{Fatoms} \, (\mathsf{Right}\, a) = \{a\}$$

$$FA = List A$$

$$Ff(a_1 \cdot a_2 \cdot \ldots \cdot a_n) = f a_1 \cdot f a_2 \cdot \ldots \cdot f a_n$$

$$A \xrightarrow{f} B$$
 $FA \xrightarrow{Ff} FB$ $FA \xrightarrow{\text{Fatoms}} \mathcal{P} A$ $FA = \mathbb{N} \times A$ $Ff(n, a) = (n, fa)$ $Fatoms(n, a) = \{a\}$

$$\mathsf{F}\,A = \mathbb{N} + A \qquad \qquad \mathsf{F}f \ (\mathsf{Left}\,n) = \mathsf{Left}\,n \qquad \mathsf{F}f \ (\mathsf{Right}\,a) = \mathsf{Right} \ (f\ a)$$

$$\mathsf{Fatoms} \ (\mathsf{Left}\,n) = \varnothing \qquad \mathsf{Fatoms} \ (\mathsf{Right}\,a) = \{a\}$$

$$\mathsf{F}\,A = \mathsf{List}\,A \qquad \begin{array}{l} \mathsf{F}\,f\,(a_1 \cdot a_2 \cdot \ldots \cdot a_n) = f\,a_1 \cdot f\,a_2 \,\ldots \cdot f\,a_n \\ \mathsf{Fatoms}\,(a_1 \cdot a_2 \cdot \ldots \cdot a_n) = \{a_1, a_2, \ldots, a_n\} \end{array}$$

$$A \xrightarrow{f} B \qquad \text{F } A \xrightarrow{\text{F } f} \text{F } B \qquad \text{F } A \xrightarrow{\text{Fatoms}} \mathcal{P} A$$

$$\text{F } A = \mathbb{N} \times A \qquad \text{Ff } (n, a) = (n, f \ a)$$

$$\text{Fatoms } (n, a) = \{a\}$$

$$\text{F } A = \mathbb{N} + A \qquad \text{Ff } (\text{Left } n) = \text{Left } n \qquad \text{Ff } (\text{Right } a) = \text{Right } (f \ a)$$

$$\text{Fatoms } (\text{Left } n) = \emptyset \qquad \text{Fatoms } (\text{Right } a) = \{a\}$$

$$\text{F } A = \text{List } A \qquad \text{Ff } (a_1 \cdot a_2 \cdot \ldots \cdot a_n) = f \ a_1 \cdot f \ a_2 \cdot \ldots \cdot f \ a_n$$

$$\text{Fatoms } (a_1 \cdot a_2 \cdot \ldots \cdot a_n) = \{a_1, a_2, \ldots, a_n\}$$

FA = Stream A

$$A \xrightarrow{f} B \qquad \qquad \mathsf{F} A \xrightarrow{\mathsf{F} f} \mathsf{F} B \qquad \qquad \mathsf{F} A \xrightarrow{\mathsf{Fatoms}} \mathcal{P} A$$

$$\mathsf{F} A = \mathbb{N} \times A \qquad \qquad \mathsf{F} f \ (n, a) = (n, f \ a) \\ \mathsf{Fatoms} \ (n, a) = \{a\}$$

$$\mathsf{F} A = \mathbb{N} + A \qquad \qquad \mathsf{F} f \ (\mathsf{Left} \ n) = \mathsf{Left} \ n \qquad \mathsf{F} f \ (\mathsf{Right} \ a) = \mathsf{Right} \ (f \ a) \\ \mathsf{Fatoms} \ (\mathsf{Left} \ n) = \varnothing \qquad \qquad \mathsf{Fatoms} \ (\mathsf{Right} \ a) = \{a\}$$

$$\mathsf{F} A = \mathsf{List} A \qquad \qquad \mathsf{F} f \ (a_1 \cdot a_2 \cdot \ldots \cdot a_n) = f \ a_1 \cdot f \ a_2 \cdot \ldots \cdot f \ a_n \\ \mathsf{Fatoms} \ (a_1 \cdot a_2 \cdot \ldots \cdot a_n) = \{a_1, a_2, \ldots, a_n\}$$

$$\mathsf{F} A = \mathsf{Stream} \ A \qquad \qquad \mathsf{F} f \ ((a_i)_{i \in \mathbb{N}}) = (f \ a_i)_{i \in \mathbb{N}}$$

$$A \xrightarrow{f} B \qquad \text{F} A \xrightarrow{\text{F} f} \text{F} B \qquad \text{F} A \xrightarrow{\text{Fatoms}} \mathcal{P} A$$

$$\text{F} A = \mathbb{N} \times A \qquad \begin{array}{c} \text{F} f \ (n, a) = (n, f \ a) \\ \text{Fatoms} \ (n, a) = \{a\} \end{array}$$

$$\text{F} A = \mathbb{N} + A \qquad \begin{array}{c} \text{F} f \ (\text{Left} \ n) = \text{Left} \ n \\ \text{Fatoms} \ (\text{Left} \ n) = \varnothing \end{array} \qquad \begin{array}{c} \text{F} f \ (\text{Right} \ a) = \text{Right} \ (f \ a) \\ \text{Fatoms} \ (\text{Right} \ a) = \{a\} \end{array}$$

$$\begin{aligned} &\mathsf{F}\,A = \mathsf{List}\,A & \mathsf{F}\,f\,\left(a_1 \cdot a_2 \cdot \ldots \cdot a_n\right) = f\,a_1 \cdot f\,a_2 \,\ldots \cdot f\,a_n \\ &\mathsf{Fatoms}\,\left(a_1 \cdot a_2 \cdot \ldots \cdot a_n\right) = \left\{a_1, a_2, \ldots, a_n\right\} \end{aligned} \\ &\mathsf{F}\,A = \mathsf{Stream}\,A & \mathsf{F}\,f\,\left((a_i)_{i \in \mathbb{N}}\right) = \left\{f\,a_i\right|_{i \in \mathbb{N}} \\ &\mathsf{Fatoms}\,\left((a_i)_{i \in \mathbb{N}}\right) = \left\{a_i \mid i \in \mathbb{N}\right\} \end{aligned}$$

Natural functor $F : Set \rightarrow Set$

Natural functor $F : Set \rightarrow Set$

The shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

The leaves are always empty-content shapes

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Define I_F = the set of all such finitary couplings

Properties of I_F: Bijectivity

Properties of I_F: Bijectivity

Properties of I_F: Bijectivity

ctor and dtor are mutually inverse bijections

I_F is the initial F-algebra

 I_F is the initial F-algebra $f = iter_s$

 I_{F}

 I_{F}

 φ unary predicate on I_F

 I_{F}

 φ unary predicate on I_F Want: If then $\forall i \in I_F$. φ i

 φ unary predicate on I_F Want: If then $\forall i \in I_F$. φ i

$$F \mid_{F} \xrightarrow{\text{Fatoms}} \mathcal{P} \mid_{F}$$

$$\text{dtor} \mid_{F}$$

```
\varphi unary predicate on I_F Want: If then \forall i \in I_F. \varphi i
```


 φ unary predicate on I_F Want: If $\forall i \in I_F$. then $\forall i \in I_F$. φ i

 φ unary predicate on I_F Want: If $\forall i \in I_F$. then $\forall i \in I_F$. φ i

 φ unary predicate on I_F Want: If $\forall i \in I_F$. then $\forall i \in I_F$. φ i

 $\Rightarrow \varphi$ (

 φ unary predicate on I_F If $\forall i \in I_F$. $(\forall i' \in \text{Fatoms (dtor } i). \varphi i') \Rightarrow \varphi i$ then $\forall i \in I_F$. φi

$$\varphi$$
 unary predicate on I_F

If $\forall i \in I_F$. $(\forall i' \in \text{Fatoms (dtor } i). \varphi i') \Rightarrow \varphi i$

then $\forall i \in I_F$. φi

 φ unary predicate on I_F If $\forall i \in I_F$. $(\forall i' \in \text{components } i. \varphi i') \Rightarrow \varphi i$ then $\forall i \in I_F$. φi

Properties of I_F: Destructor-Style Induction

 φ unary predicate on I_F If $\forall i \in I_F$. $(\forall i' \in \text{components } i. \varphi i') \Rightarrow \varphi i$ then $\forall i \in I_F$. φi

Properties of I_F: Constructor-Style Induction

 φ unary predicate on I_F If $\forall i \in I_F$. $(\forall i' \in \text{components } i. \varphi i') \Rightarrow \varphi i$ then $\forall i \in I_F$. φi

Properties of I_F: Constructor-Style Induction

$$\varphi$$
 unary predicate on I_F

If $\forall x \in F \mid_F$. $(\forall i \in Fatoms \ x. \ \varphi \ i) \Rightarrow \varphi \ (\mathsf{ctor} \ x)$

then $\forall i \in I_F$. $\varphi \ i$

Given a natural functor F, $(I_F, ctor : F I_F \rightarrow I_F)$ satisfies:

Given a natural functor F, $(I_F, ctor : F I_F \rightarrow I_F)$ satisfies:

ctor bijection

Given a natural functor F, $(I_F, ctor : F I_F \rightarrow I_F)$ satisfies:

ctor bijection

Iteration (Initial Algebra Property): For all $(A, s : F A \rightarrow A)$, there exists a unique function iter_s such that

Given a natural functor F, $(I_F, \text{ctor} : F \mid_F \rightarrow I_F)$ satisfies:

ctor bijection

Iteration (Initial Algebra Property): For all $(A, s : F A \rightarrow A)$, there exists a unique function iter_s such that

$$\begin{array}{c|c} \mathsf{F} \: \mathsf{I}_{\mathsf{F}} & \xrightarrow{\mathsf{F} \: \mathsf{iter}_s} \mathsf{F} \: A \\ \mathsf{ctor} & & s \\ & \mathsf{I}_{\mathsf{F}} & \xrightarrow{\mathsf{iter}} A \end{array}$$

Induction: Given any predicate φ on I_F

$$\frac{\forall x \in \mathsf{F} \mid_{\mathsf{F}}. \ (\forall \mathsf{i} \in \mathsf{Fatoms} \ \mathsf{x}. \ \varphi \mid) \Rightarrow \varphi \ (\mathsf{ctor} \ \mathsf{x})}{\forall i \in \mathsf{I}_{\mathsf{F}}. \ \varphi \mid}$$

Given a natural functor F, $(I_F, ctor : F I_F \rightarrow I_F)$ satisfies:

ctor bijection

$$I_F$$
 = the datatype of F

Iteration (Initial Algebra Property): For all $(A, s : F A \rightarrow A)$, there exists a unique function iter_s such that

$$\begin{array}{c|c} \mathsf{F} \: \mathsf{I}_{\mathsf{F}} & \xrightarrow{\mathsf{F} \: \mathsf{iter}_s} \mathsf{F} \: A \\ \mathsf{ctor} & & s \\ & \mathsf{I}_{\mathsf{F}} & \xrightarrow{\mathsf{iter}} A \end{array}$$

Induction: Given any predicate φ on I_F

$$\frac{\forall x \in \mathsf{F} \mid_{\mathsf{F}}. \ (\forall \mathsf{i} \in \mathsf{Fatoms} \ \mathsf{x}. \ \varphi \mid) \Rightarrow \varphi \ (\mathsf{ctor} \ \mathsf{x})}{\forall i \in \mathsf{I}_{\mathsf{F}}. \ \varphi \mid}$$

Let B be a fixed set. $FA = \{*\} + B \times A$

Let B be a fixed set. $FA = \{*\} + B \times A$

The shapes of F: Left *

Let *B* be a fixed set. $FA = \{*\} + B \times A$

The shapes of F: Left * Right $(b, _)$ for each $b \in B$

Let
$$B$$
 be a fixed set. $FA = \{*\} + B \times A$

The shapes of F: Left * Right
$$(b, _)$$
 for each $b \in B$

Or, graphically:
$$\blacksquare_*$$

Let
$$B$$
 be a fixed set. $FA = \{*\} + B \times A$

The shapes of F: Left * Right
$$(b, _)$$
 for each $b \in B$

Or, graphically:
$$\blacksquare_*$$
 for each $b \in B$

Who is I_{F} ?

Its elements have the form

 $Right(b_1, \ldots, Right(b_n, Right(Left *)) \ldots)$

Let
$$B$$
 be a fixed set. $FA = \{*\} + B \times A$

The shapes of F: Left * Right
$$(b, _)$$
 for each $b \in B$

Or, graphically:
$$\blacksquare_*$$
 \bullet_b for each $b \in B$

Who is I_F ? Its elements have the form $Right(b_1, ..., Right(b_n, Right(Left *)) ...)$ I.e., essentially lists $b_1 \cdot ... \cdot b_n$

Let B be a fixed set. $FA = \{*\} + B \times A$ The shapes of F: Left * Right $(b, _)$ for each $b \in B$ Or, graphically: \blacksquare_* \bullet_b for each $b \in B$ Who is I_F ?

Its elements have the form Right $(b_1, \ldots, Right(b_n, Right(Left *)) \ldots)$

I.e., essentially lists $b_1 \cdot \ldots \cdot b_n$

So $I_E = List_R$

$$B \text{ fixed} \quad F A = \{*\} + B \times A \quad f = \text{iter}_s \quad I_F = \text{List}_B$$

$$\begin{array}{c|c}
\mathsf{F} \mathsf{I}_{\mathsf{F}} & \xrightarrow{f} & \mathsf{F} A \\
& & & & \\
\mathsf{s} & & & \\
\mathsf{I}_{\mathsf{F}} & \xrightarrow{f} & A
\end{array}$$

 $\forall x \in F \mid_{F} f (\cot x) = s ((F \mid f) x)$

$$B \text{ fixed}$$
 $FA = \{*\} + B \times A$ $f = \text{iter}_s$ $I_F = \text{List}_B$

$$\{*\} + B \times I_{\mathsf{F}} \xrightarrow{\{*\} + B \times f} \{*\} + B \times A$$

$$\downarrow s$$

 $\forall x \in F \mid_{F} f (\cot x) = s ((F \mid f) \mid x)$

$$B \ \text{fixed} \qquad \text{F} \ A = \{*\} + B \times A \qquad f = \text{iter}_s \qquad \text{I}_{\text{F}} = \text{List}_{\text{B}}$$

$$\text{Define:} \qquad \text{Nil} = \text{ctor} \ (\text{Left} \ *) \qquad \text{Cons}(b,i) = \text{ctor} \ (\text{Right} \ (b,i))$$

$$\text{Nil}^A = s \ (\text{Left} \ *) \qquad \text{Cons}^A(b,a) = s \ (\text{Right} \ (b,a))$$

$$\{*\} + B \times \text{I}_{\text{F}} \xrightarrow{\{*\} + B \times f} \{*\} + B \times A$$

$$\{*\} + B \times I_{\mathsf{F}} \xrightarrow{\{*\} + B \times f} \{*\} + B \times A$$

$$\downarrow s$$

$$\forall x \in \mathsf{F} \mathsf{I}_{\mathsf{F}}. \mathsf{f} (\mathsf{ctor} \mathsf{x}) = \mathsf{s} ((\mathsf{F} \mathsf{f}) \mathsf{x})$$

$$B \ \text{fixed} \qquad \text{F} \ A = \{*\} + B \times A \qquad f = \text{iter}_s \qquad \text{I}_{\text{F}} = \text{List}_{\text{B}}$$

$$\text{Define:} \qquad \begin{array}{ll} \text{Nil} = \text{ctor} \left(\text{Left} \ * \right) & \text{Cons}(b,i) = \text{ctor} \left(\text{Right} \left(b,i \right) \right) \\ \text{Nil}^A = s \left(\text{Left} \ * \right) & \text{Cons}^A(b,a) = s \left(\text{Right} \left(b,a \right) \right) \end{array}$$

$$B \times I_{\mathsf{F}} \xrightarrow{B \times f} B \times A$$

$$\downarrow^{\mathsf{Cons}^A} \qquad \qquad \downarrow^{\mathsf{Cons}^A}$$

$$\mathsf{Nil} \in \mathsf{I}_{\mathsf{F}} \xrightarrow{f} A \ni \mathsf{Nil}^A$$

$$\forall x \in F \mid_{F} f (\cot x) = s ((F \mid f) x)$$

$$B \text{ fixed} \quad \mathsf{F} A = \{*\} + B \times A \quad f = \mathsf{iter}_s \quad \mathsf{I}_\mathsf{F} = \mathsf{List}_\mathsf{B}$$

Define:
$$\begin{array}{ll} \mathsf{Nil} = \mathsf{ctor} \; (\mathsf{Left} \; *) & \mathsf{Cons}(b,i) = \mathsf{ctor} \; (\mathsf{Right} \; (b,i)) \\ \mathsf{Nil}^A = s \; (\mathsf{Left} \; *) & \mathsf{Cons}^A(b,a) = s \; (\mathsf{Right} \; (b,a)) \\ \end{array}$$

$$\begin{array}{c|c} B \times I_{\mathsf{F}} & \xrightarrow{B \times f} & B \times A \\ & & & & & \\ \mathsf{Cons} & & & & \\ \mathsf{Nil} \in \mathsf{I_{\mathsf{F}}} & \xrightarrow{f} & A \ni \mathsf{Nil}^A \end{array}$$

$$f \text{ Nil} = \text{Nil}^A$$

 $\forall b \in B, i \in I_F. f (\text{Cons}(b, i)) = \text{Cons}^A (b, f i)$

$$B \text{ fixed} \quad \mathsf{F} \, A = \{*\} + B \times A \quad f = \mathsf{iter}_s \quad \mathsf{I}_\mathsf{F} = \mathsf{List}_\mathsf{B}$$

Define:
$$\begin{array}{ll} \mathsf{Nil} = \mathsf{ctor} \; (\mathsf{Left} \; *) & \mathsf{Cons}(b,i) = \mathsf{ctor} \; (\mathsf{Right} \; (b,i)) \\ \mathsf{Nil}^A = s \; (\mathsf{Left} \; *) & \mathsf{Cons}^A(b,a) = s \; (\mathsf{Right} \; (b,a)) \\ \end{array}$$

$$f \text{ Nil} = \text{Nil}^A$$
 We obtain standard list iteration! $\forall b \in B, i \in I_F. f (\text{Cons}(b, i)) = \text{Cons}^A (b, f i)$

$$B \text{ fixed} \quad F A = \{*\} + B \times A \quad I_F = \text{List}_B$$

$$\begin{array}{c|c} \mathsf{F} \ \mathsf{I}_{\mathsf{F}} & \xrightarrow{\mathsf{Fatoms}} \mathcal{P} \ \mathsf{I}_{\mathsf{F}} \\ \hline \\ \mathsf{ctor} & \\ \hline \\ \mathsf{I}_{\mathsf{F}} \\ \hline \\ & \forall x \in \mathsf{F} \ \mathsf{I}_{\mathsf{F}}. \ (\forall \mathsf{i} \in \mathsf{Fatoms} \ \mathsf{x}. \ \varphi \ \mathsf{i}) \Rightarrow \varphi \ (\mathsf{ctor} \ \mathsf{x}) \\ \hline \\ & \forall i \in \mathsf{I}_{\mathsf{F}}. \ \varphi \ \mathsf{i} \\ \hline \end{array}$$

$$B \text{ fixed} \quad F A = \{*\} + B \times A \quad I_F = \text{List}_B$$

$$B \text{ fixed} \qquad \mathsf{F} \, A = \{*\} + B \times A \qquad \mathsf{I}_{\mathsf{F}} = \mathsf{List}_{\mathsf{B}}$$

$$\mathsf{Nil} = \mathsf{ctor} \, (\mathsf{Left} \, *) \quad \mathsf{Cons}(b,i) = \mathsf{ctor} \, (\mathsf{Right} \, (b,i))$$

$$\{*\} + B \times \mathsf{I}_{\mathsf{F}} \xrightarrow{\mathsf{Left} \, * \mapsto \varnothing, \, \mathsf{Right} \, (b,i) \mapsto \{i\}} \longrightarrow \mathcal{P} \, \mathsf{I}_{\mathsf{F}}$$

$$\mathsf{ctor} \qquad \mathsf{I}_{\mathsf{F}}$$

$$\forall x \in \mathsf{F} \, \mathsf{I}_{\mathsf{F}}. \, (\forall \mathsf{i} \in \mathsf{Fatoms} \, \mathsf{x}. \, \varphi \, \mathsf{i}) \Rightarrow \varphi \, (\mathsf{ctor} \, \mathsf{x})$$

 $\forall i \in I_{\mathsf{F}}. \varphi \mathsf{i}$

 $B \text{ fixed} \quad \mathsf{F} A = \{*\} + B \times A \quad \mathsf{I}_\mathsf{F} = \mathsf{List}_\mathsf{B}$

$$Nil = ctor(Left *) Cons(b, i) = ctor(Right(b, i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \, * \, \mapsto \varnothing, \; \mathsf{Right} \, (b,i) \, \mapsto \{i\}} \to \mathcal{P} \, I_{\mathsf{F}}$$

 $(\forall i \in \mathsf{Fatoms} (\mathsf{Left} *). \varphi i) \Rightarrow \varphi (\mathsf{ctor} (\mathsf{Left} *))$

B fixed $FA = \{*\} + B \times A$ $I_F = List_B$

$$Nil = ctor(Left *) Cons(b, i) = ctor(Right(b, i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \ * \mapsto \varnothing, \ \mathsf{Right} \ (b,i) \mapsto \{i\}} \to \mathcal{P} \ \mathsf{I}_{\mathsf{F}}$$

 $(\forall i \in \emptyset. \ \varphi \ i) \Rightarrow \varphi \ (\mathsf{ctor} \ (\mathsf{Left} \ *))$

 $B \text{ fixed} \quad F A = \{*\} + B \times A \quad I_F = List_B$

$$Nil = ctor(Left *) Cons(b, i) = ctor(Right(b, i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \ * \mapsto \varnothing, \ \mathsf{Right} \ (b,i) \mapsto \{i\}} \to \mathcal{P} \ \mathsf{I}_{\mathsf{F}}$$

$$\forall b \in B, i \in I_{F}. (\forall i' \in \mathsf{Fatoms} (\mathsf{Right} (\mathsf{b}, \mathsf{i})). \varphi \mathsf{i'}) \Rightarrow \varphi (\mathsf{ctor} (\mathsf{Right} (\mathsf{b}, \mathsf{i})))$$

$$\forall i \in I_{F}. \varphi \mathsf{i}$$

 φ (ctor (Left *))

B fixed $FA = \{*\} + B \times A$ $I_F = List_B$

$$Nil = ctor(Left *) Cons(b, i) = ctor(Right(b, i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \ * \mapsto \varnothing, \ \mathsf{Right} \ (b,i) \mapsto \{i\}} \longrightarrow \mathcal{P} \ \mathsf{I}_{\mathsf{F}}$$

 φ Nil

B fixed $F A = \{*\} + B \times A$ $I_F = \text{List}_B$

$$Nil = ctor(Left *) Cons(b, i) = ctor(Right(b, i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \, * \, \mapsto \varnothing, \; \mathsf{Right} \, (b,i) \, \mapsto \{i\}} \to \mathcal{P} \, I_{\mathsf{F}}$$

$$\varphi$$
 NiI $\forall b \in B, i \in I_F. (\forall i' \in \{i\}. \varphi i') \Rightarrow \varphi (\mathsf{ctor} (\mathsf{Right} (b, i)))$

Example of Datatype: List

B fixed $F A = \{*\} + B \times A$ $I_F = \text{List}_B$

$$\mathsf{Nil} = \mathsf{ctor} \; (\mathsf{Left} \; *) \quad \mathsf{Cons}(b,i) = \mathsf{ctor} \; (\mathsf{Right} \; (b,i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \, * \, \mapsto \varnothing, \; \mathsf{Right} \, (b,i) \, \mapsto \{i\}} \to \mathcal{P} \, I_{\mathsf{F}}$$

$$\varphi$$
 NiI
 $\forall b \in B, i \in I_F. \varphi i \Rightarrow \varphi \text{ (ctor (Right (b, i)))}$

Example of Datatype: List

B fixed $F A = \{*\} + B \times A$ $I_F = \text{List}_B$

$$\mathsf{Nil} = \mathsf{ctor}\; (\mathsf{Left}\; \star) \quad \mathsf{Cons}(b,i) = \mathsf{ctor}\; (\mathsf{Right}\; (b,i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \, * \, \mapsto \varnothing, \; \mathsf{Right} \, (b,i) \, \mapsto \{i\}} \to \mathcal{P} \, I_{\mathsf{F}}$$

$$\varphi$$
 Nil $\forall b \in B, \ i \in I_F. \ \varphi \ i \Rightarrow \varphi \ (\mathsf{Cons} \ (\mathsf{b}, \mathsf{i}))$

Example of Datatype: List

 $B \text{ fixed} \quad F A = \{*\} + B \times A \quad I_F = \text{List}_B$

$$Nil = ctor(Left *) Cons(b, i) = ctor(Right(b, i))$$

$$\left\{ * \right\} + B \times I_{\mathsf{F}} \xrightarrow{\mathsf{Left} \, * \, \mapsto \varnothing, \; \mathsf{Right} \, (b,i) \, \mapsto \{i\}} \longrightarrow \mathcal{P} \, I_{\mathsf{F}}$$

Natural functor $F : Set \rightarrow Set$

Natural functor $F : Set \rightarrow Set$

The shapes of F:

Natural functor $F : Set \rightarrow Set$

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

The leaves are always empty-content shapes

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

The leaves are always empty-content shapes

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Define J_F = the set of all such (possibly) infinitary couplings

Welcome to Codatatypes

End of Part I

Many thanks for your attention See you in 30 minutes