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Recall: Natural Functors on Set

Set = the class of all sets

It comes with a set of shapes, say
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♣
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Natural Functors
F ∶ Set→ Set

Functoriality: For all A
f→ B, we have FA

F f
⇒ FB

such that:

F idA = idFA

F (g ○ f) = F g ○ F f

Naturality: For all A, we have FA
FatomsA⇒ P A such

that, for all A
f→ B:

image f ○ FatomsA = FatomsB ○ image f



Examples

A
f
⇒ B FA

F f
⇒ FB FA

Fatoms⇒ P A

FA = N ×A Ff (n, a) = (n, f a)
Fatoms (n, a) = {a}

FA = N +A Ff (Left n) = Left n Ff (Right a) = Right (f a)
Fatoms (Left n) = ∅ Fatoms (Right a) = {a}

FA = ListA
Ff (a1 ⋅ a2 ⋅ . . . ⋅ an) = f a1 ⋅ f a2 . . . ⋅ f an
Fatoms (a1 ⋅ a2 ⋅ . . . ⋅ an) = {a1, a2, . . . , an}
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Recall: Properties of IF
Given a natural functor F, (IF, ctor ∶ F IF → IF) satisfies:

ctor bijection IF = the datatype of F

Iteration (Initial Algebra Property): For all (A, s ∶ F A→ A),
there exists a unique function iters such that

F IF

ctor

��

F iters // F A

s

��
IF iters

// A

Induction: Given any predicate ϕ on IF

∀x ∈ F IF. (∀i ∈ Fatoms x. ϕ i) ⇒ ϕ (ctor x)
∀i ∈ IF. ϕ i
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Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲
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♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▲ ● ▼ ∎

⋮ ⋮ ⋮

Define JF = the set of all such (possibly) infinitary couplings



Recall: Properties of IF: Bijectivity

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

F IF

ctor

��
IF

dtor

OO

ctor and dtor are mutually inverse bijections
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Properties of JF: Coiteration

Given a natural functor F, (JF, dtor ∶ JF → F JF)

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters // F JF

ctor

��
A

s

OO

coiters // JF

JF = the codatatype of F
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The IF to JF embedding revisited

F IF

ctor

��

F ι // F JF

ctor

��
IF

ι //

dtor

OO

JF

dtor

OO

ι can be regarded as defined by
iteration on IF

ι = iterctor



The IF to JF embedding revisited

F IF

ctor

��

F ι // F JF

ctor

��
IF

ι //

dtor

OO

JF

dtor

OO

ι can be regarded as defined by
iteration on IF but also by coiteration on JF!

ι = iterctor = coiterdtor



Properties of JF: Coinduction

j

j1 j2 j3

j1,1 j1,2

j′

j′1 j′2 j′3

j′1,1 j′1,2

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Want: j = j′
j2 = j′2
j3 = j′3
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But First: Relators

A

R

B

FA

FrelR

FB

♣

− − −

♣

− − −

Two elements of FA and FB are related by Frel R iff
they have the same shape
and the contents from corresponding slots are related by R
R a1 b1, R a2 b2, R a3 b3
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Relator Defined from Mapper

z = ♣

(a1, b1) (a2, b2) (a3, b3)

x = ♣

a1 a2 a3

y = ♣

b1 b2 b3

R relation between A and B, x ∈ F A, y ∈ F B

Frel R x y defined as
∃z ∈ F {(a, b) ∣ R a b}. F π1 z = x ∧ F π2 z = y
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Relators for the Running Examples

R relation between A and B

Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)
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Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,
Given binary relation R on JF
If ∀j, j′. R j j′

Then R is included in equality
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Summary for JF
Given a natural functor F, (JF, dtor ∶ JF → F JF) satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters// F JF

ctor

��
A

s

OO

coiters // JF

Coinduction: Given any binary relation R on JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′
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Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b, ) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB
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Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
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B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
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##

f // JF
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��
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A
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∀a ∈ A. hd (f a) = hdA a Standard stream coiteration
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Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

⟨hd,tl⟩

��

JF

⟨hd,tl⟩

��
B × JF

((b,j),(b′,j′)) ↦ b=b′∧R j j′
B × JF

∀j, j′. R j j′⇒ hd j = hd j′ ∧ R (tl j) (tl j′)
∀j, j′. R j j′⇒ j = j′



Concrete Example of Coiteration

ev ∶ StreamB → StreamB

hd (ev j) = hd j
tl (ev j) = ev (tl (tl j))

odd ∶ StreamB → StreamB

hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl j))

zip ∶ StreamB × StreamB → StreamB

hd (zip (j1, j2)) = hd j1
tl (zip (j1, j2)) = zip (j2, tl j1)
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Pattern-Based Incremental Coinduction
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tl (zip (ev j, odd j)) = tl j hd (zip (ev j, odd j)) = hd j

tl (zip (odd j, ev (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j
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Universe of (Co)Datatypes

Natural functors are a class of functors

containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A
but B ↦ ListB is also a natural functor
and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures
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Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

User can write high-level specifications:

codatatype StreamA = Cons (hd ∶ A) (tl ∶ List A)

In the background:

� Isabelle parses this into a natural functor: B ↦ B ×A

� Then infers high-level principles for (co)recursion and
(co)induction for Stream

� Finally, Stream is itself registered as a natural functor
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Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype X A = Leaf A ∣ Node (X A) (X A)

datatype X A = Node A (List (X A))

finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions
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Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete
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