A Concrete Introduction to
Abstract Coinductive Datatypes

Andrei Popescu

Middlesex University
School of Science and Technology
Foundations of Computing Group

=

This is continuation of

www.andreipopescu.uk/resourcesForStudents/
introductionToDatatypes.pdf

See also

www.andreipopescu.uk/resourcesForStudents/
codatatypesInIsabelleHOL.pdf

www.andreipopescu.uk/slides/ESOP2015-slides.pdf

www.andreipopescu.uk/resourcesForStudents/introductionToDatatypes.pdf
www.andreipopescu.uk/resourcesForStudents/introductionToDatatypes.pdf
www.andreipopescu.uk/resourcesForStudents/codatatypesInIsabelleHOL.pdf
www.andreipopescu.uk/resourcesForStudents/codatatypesInIsabelleHOL.pdf
www.andreipopescu.uk/slides/ESOP2015-slides.pdf

Recall: It's All About Shape and Content
Shapes

| ° A '

B ANEANEN

Recall: It's All About Shape and Content
Shapes

| ° A '

B ANEANEN

/\ /\ /IN

ay a2 ag

S— o

Shapes filled with content from a set A = {ay, as, ...}

Recall: Natural Functors on Set

Set = the class of all sets

Recall: Natural Functors on Set

F : Set — Set is a natural functor if:

Recall: Natural Functors on Set

F : Set — Set is a natural functor if:
It comes with a set of shapes

Recall: Natural Functors on Set

F : Set — Set is a natural functor if:
It comes with a set of shapes, say

VANVANA

Recall: Natural Functors on Set

F : Set — Set is a natural functor if:
It comes with a set of shapes, say

VANVANA

Each element . € F A consists of:

a choice of a shape

Recall: Natural Functors on Set

F : Set — Set is a natural functor if:
It comes with a set of shapes, say

VANVANA

Each element . € F A consists of:

a choice of a shape, say

/N

Recall: Natural Functors on Set

F : Set — Set is a natural functor if:
It comes with a set of shapes, say

VANVANA

Each element . € F A consists of:

a choice of a shape, say s
/IN

a filling with content from A

Recall: Natural Functors on Set

F:Set — Set is a natural functor if:
It comes with a set of shapes, say

ANYANY/

\

Each element 2 € F A consists of:

a choice of a shape, say s
/ I\
a; a2 as

a filling with content from A, say

Recall: Examples of Natural Functors

FA=NxA

FA=N+A

FA=ListA

®)

®

®

*

Recall: Examples of Natural Functors

o o (D)
FA=NxA ‘ ‘
a a a
°
FA=N+A ‘ LTy} LB
a

o L) o3

FA=List A © | BN ‘\\

a al as aq a9 as

Functorial Action (Mapper)

A

Functorial Action (Mapper)

A FA

Functorial Action (Mapper)

A

FA

Ff

FB

Iy
I

ai a2 a3

Functorial Action (Mapper)

A FA s
N
aq a9 as
f Fr
PARN
B FB far fay fas

Keep the same shape
Apply f to the content

Atoms

FA Fatoms4 PA

Atoms

&
PN
aq a9 as
FA Fatoms4 PA

Atoms

&
PN
aq a9 as {ah a2, a3}
FA Fatoms 4 PA

Natural Functors
F:Set — Set

Functoriality: For all A i B, we have F A in FB
such that:

Fidg = ideg
F(gof)=FgoFf

Fatoms 4

Naturality: For all A, we have FA =" "P A such
that, for all A i B:

image f o Fatoms, = Fatomsp o image f

Examples

AL B FALER FAPR™SDp 4

_ Ff(n,a)=(n,fa)
FA=NxA ioms (n,a) ={a}

FA_naa Ff(Leftn)=Leftn Ff (Righta)=Right (f o)
- Fatoms (Leftn) =@ Fatoms (Righta) = {a}

FA-=List A Ff(ai-as-...can)=fai-fas... fa,

Fatoms (ai-as-...-a,) ={ay,as,...,a,}

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Recall: Iterating Shape Composition

Natural functor F : Set — Set

The shapes of F: " v A

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: v A

7N\

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: v A &

7N\ AN

Put them together by plugging in shape for content slot

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: v A &

7N\ AN

Put them together by plugging in shape for content slot

T

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F:] v A ry

VAN AN

Put them together by plugging in shape for content slot

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F:] v A ry

VAN AN

Put them together by plugging in shape for content slot

I

VRN

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F:] v A ry

VAN AN

Put them together by plugging in shape for content slot

&
A/l\«ﬂ-
SN _/l_

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [v A

&
/N /ING

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [v A

&
/N /ING

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Y
A/L\+
-/ AN YARN

v H v =1

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F:] v A ry

7N\ AN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Y
A/L\'ﬁ
/ \ YARN

= v

H v 1

Define Ir = the set of all such finitary couplings

Recall: Properties of I¢

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:

ctor bijection IlF = the datatype of F

Iteration (Initial Algebra Property): For all (A,s:F A — A),
there exists a unique function iter, such that

F iters

FlF—>FA

I A

iterg

Induction: Given any predicate ¢ on Ig

Vo eF lg. (Vie Fatoms x. ¢ i) = ¢ (ctor x)

VZEIFQOI

Coiterating Shape Composition

Natural functor F : Set — Set

Coiterating Shape Composition

Natural functor F : Set — Set

The shapes of F: BV o A

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: BV o A

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: BV o A &
| /7 N\ / I\

Put them together by plugging in shape for content slot

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: BV o A &
| /7 N\ / I\

Put them together by plugging in shape for content slot

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A Iy

LN /IN

Put them together by plugging in shape for content slot

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A Iy

LN /IN

Put them together by plugging in shape for content slot

R

VRN

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A Iy

LN /IN

Put them together by plugging in shape for content slot

Fy
A/l\4
SN SN

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A 'y

N IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A 'y

N IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A 'y

N IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A 'y

N IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Allow infinite couplings

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A 'y

N IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

&
A/l\qs
7/ \ VAN
[| A - v =

7N

Allow infinite couplings

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A 'y

N IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

&
A/l\qs
/ N\ / I\
[| A e v =

R

Allow infinite couplings

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapesof F: m w o A »

LN /N

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Allow infinite couplings

Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: B Vv o A &

LN /I

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Define Jr = the set of all such (possibly) infinitary couplings

Recall: Properties of Ig: Bijectivity

A [| &
/ N\ /|\
n v

HE v =
dtor | |ctor
&
A/l\
[] &
/ N\ VARN lF

ctor and dtor are mutually inverse bijections

Properties of Jr: Bijectivity

&
A [| L

VNN
[| : v 1
dtor | |ctor
ry
A/|\
[| &
/N AN JF
[| : v 1

ctor and dtor are mutually inverse bijections

Properties of Jr: Bijectivity

&
A [| L

VNN
[| : v 1
dtor | |ctor
ry
A/|\
[| &
/N AN Jr
[| : v 1

ctor and dtor are mutually inverse bijections
A similar property holds for Jg, where we use the
same notations for constructor and destructor

lr is embedded in Jg

dtor | | ctor dtor | | ctor

lr is embedded in Jg

Fle F L F

dtor | | ctor dtor | | ctor

IF : Jr

L= iterc’cor:F Jr=F JF

FA

Properties of Jg: Coiteration

Jr

Properties of Jg: Coiteration

Properties of Jg: Coiteration

Properties of Jg: Coiteration

Properties of Jg: Coiteration

Fy
PN
ay ag as
FA F Jr
S ctor|
A)

Properties of Jg: Coiteration

r'y
I
a1 a2 as
FA........F....].C.“.)FJF
s ctor|
A .

Properties of Jg: Coiteration

‘ &
ay a9 as f ay f . f as
s ctor|
A .

Properties of Jg: Coiteration

* &
aq a9 as f ay f . f as
s ctor|
A .
&

Properties of Jg: Coiteration

&
aq a9 as f ay f . f as
s ctor|
A .
&
a | /,l \ |
Ja [az fas

ai, as, az are not “smaller” than a in any sense

Properties of Jg: Coiteration

Fy
I I
ay a9 as f ay f . f as
F A F g
s ctor|
A .
&
“ T

Jaq [az I as

ai, as, az are not “smaller” than a in any sense
But computation has made progress

Properties of Jg: Coiteration

FA

J

At - Je

Properties of Jg: Coiteration

FA

J

At - Je

Properties of Jg: Coiteration

sa

FA

J

At - Je

Properties of Jg: Coiteration

&»
aq Q9 as

FA

J

At - Jr

Properties of Jg: Coiteration

/I\

S a S Q9 as

Properties of Jg: Coiteration

Q/I\A
RN SN

ai 1,2 Q21 G292 A3

Properties of Jg: Coiteration

&
P
') [] A
SN SN

Properties of Jg: Coiteration

&
') [] A
AN RN
FA
ry
T
') [] A

Properties of Jg: Coiteration

&
P
') [] A
SN SN

FA
s a = the seed encoding the
y growth of the tree f a
f

A i > e
ry
T
') [] A
SN SN

Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg — F Jg)

Coiteration (Final Coalgebra Property): For all
(A,s: A—F A), there exists a unique function coiter, with

F coiter
FA—"" - FJ
S ctor

coiter
A— s ¢

Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg — F Jg)

Coiteration (Final Coalgebra Property): For all
(A,s: A—F A), there exists a unique function coiter, with

F coiter
FA———=F J§
s dtor

coiter
/P CR—

Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg — F Jg)

Coiteration (Final Coalgebra Property): For all
(A,s: A—F A), there exists a unique function coiter, with

F coiter
FA———=F J§
s dtor
coiterg
Jr

JF = the codatatype of F

The | to Jr embedding revisited

Fle

dtor

ctor

dtor

¢ can be regarded as defined by

iteration on Ig

l/ = Ite rctor

F Je

ctor

The | to Jr embedding revisited

Fle il F Jr

dtor | | ctor dtor| |[ctor

IF : Jr

¢ can be regarded as defined by
iteration on Ig but also by coiteration on Jg!

L = Itercior = COItergior

Properties of Jr: Coinduction

A

J

Properties of Jr: Coinduction

A

J

Want: =7/

Properties of Jr: Coinduction

& &
I TIN
1 J2 s gt Ja s

Want: =7/

Properties of Jr: Coinduction

& &
I TN
7 J2 Js 7 Ja U3

Suffices: j; = j]
j2 = 75
J3 =J3

Properties of Jr: Coinduction

& &
I RN
A J2 J3 A 74 g4
1N\ N

Ji1 o J12 j{ 1 j{ 9

Suffices: j; = j]
j2 = 75
J3 =J3

Properties of Jr: Coinduction

& &
A J2 J3 A 74 74
IS I\

Ji1 o J12 Ji1 J1s

SUfﬁceS: le = jil, j1~,2 = j{a
=
J3 =J3

Properties of Jr: Coinduction

N N

Suffices: ji1=Ji,, Ji2=Jl>
i
J3 = J3

Properties of Jr: Coinduction

N N
If we can stay in the game indefinitely, then equality holds!
Suffices: ji1 = j{,p J12 = .7{,2

J2= 7
J3 =J3

Properties of Jr: Coinduction

N N

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game"?

Suffices: Ji1 =171, J12=1J1,
i
J3 =173

Properties of Jr: Coinduction

N N

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?
By exhibiting a “strategy”

Suffices: Ji1 =171, J12=1J1,
i
J3 =173

But First: Relators

But First: Relators

FA

Frel R

FB

But First: Relators

FA

Frel R

FB

But First: Relators

A FA
R Frel R
B FB

Two elements of F A and F B are related by Frel R iff

But First: Relators

A FA Fs
IS
R Frel R
PN
B FB - - -

Two elements of F A and F B are related by Frel R iff
they have the same shape

But First: Relators

A FA s
1N
aq a9 as
R Frel R
e T AN
B F B bl bg]);),

Two elements of F A and F B are related by Frel R iff
they have the same shape
and the contents from corresponding slots are related by R

But First: Relators

A FA 7y
N
a1 a2 as
R Frel R
/ T AN
B FB b1 by b3

Two elements of F A and F B are related by Frel R iff
they have the same shape

and the contents from corresponding slots are related by R
R aq bl, R a9 bg, R as Z);g

Relator Defined from Mapper

AR PARN

a1 @2 @3 b1 ba b3

R relation between A and B, zeF A, yeF B

Relator Defined from Mapper

R relation between A and B, zeF A, yeF B

Frel R z y defined as

Relator Defined from Mapper

R relation between A and B, zeF A, yeF B

Frel R x y defined as
JzeF{(a,b)|Rab}.Fmiz=0AFmyz=y

Relator Defined from Mapper

SN

(a1,b1) (az,b2) (a3, b3)

R relation between A and B, zeF A, yeF B

Frel R x y defined as
JzeF{(a,b)|Rab}.Fmiz=0AFmyz=y

Relators for the Running Examples

R relation between A and B

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA Frel R(m,a)(n,b) <=

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a)(n,b) <= (m=n A Rab)

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a)(n,b) <= (m=n A Rab)

FA=N+A

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B
FA=NxA FrelR(m,a)(n,b) <= (m=n A Rab)

Frel Ruv <
FA=N+A

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA Frel R(m,a)(n,b) <= (m=nn Rab)
Frel Ruv <

FA=N+A (In. u=wv=Leftn)v
(Ja,b. u=Righta A v=Rightb A Rab)

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B
FA=NxA Frel R(m,a)(n,b) <= (m=nn Rab)
Frel Ruv <

FA=N+A (In. u=wv=Leftn)v
(Ja,b. u=Righta A v=Rightb A Rab)

FA=List A

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA Frel R(m,a)(n,b) <= (m=nn Rab)

Frel Ruv <
FA=N+A (In. u=wv=Leftn)v
(Ja,b. u=Righta A v=Rightb A Rab)

FA-Lista relf(a-as-an) (bi-bo-onoby) =

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA Frel R(m,a)(n,b) <= (m=nn Rab)

Frel Ruv <
FA=N+A (In. u=wv=Leftn)v
(Ja,b. u=Righta A v=Rightb A Rab)

Frel R (ay-as-...-a,) (by-by-...-b,) <

FA=List A m=n A (Vi. Ra; b;)

Back to the “Strategy” for Proving Equality

JE

dtor

F e

Back to the “Strategy” for Proving Equality

JE

dtor

F e

Given binary relation R on Jg

Back to the “Strategy” for Proving Equality

y !

Jr j J

dtor

F e

Given binary relation R on Jg
Ifvy,7.Rjj

Back to the “Strategy” for Proving Equality

Jr J J'
dtor
s »
FJE N SN

jl jQ J3 jl jé jg

Given binary relation R on Jg
If Vj,j'. Rjj" = Frel R (dtor j) (dtor j")

Back to the “Strategy” for Proving Equality

Jr J J’
dtor
s »
FJE /1IN SN

jl]2 j3 j1]é]'3

Given binary relation R on Jg
If Vj,j'. Rjj" = Frel R (dtor j) (dtor j")
Then R is included in equality

Back to the “Strategy” for Proving Equality

Jr y J'
dtor
s s
FJe VRN //I\ /

Ji J2 J3 Ji gy Jh

Given binary relation R on Jg
If Vj,5'. Rjj" = Frel R (dtor j) (dtor j')
Then R is included in equality Vj,73". Rjj ' =j=7

Back to the “Strategy” for Proving Equality

JF J J'
dtor
&» &
F e VRN VRN

Ji o Je2 Js g Jh 75

Given binary relation R on Jg
If Vj,j'. Rjj" = Frel R (dtor j) (dtOI’j ’B’ F-bisimulation
Then R is included in equality Vj,5'. Rjj ' =j=7"

Back to the “Strategy” for Proving Equality

JF J J'
dtor
&» &
F e VRN VRN

JvoJ2 Js g1 Ja U3

Summary: to prove j = j’,
Given binary relation R on Jg
If Vj,j'. Rjj" = Frel R (dtor j) (dtOI’J ’B’ F-bisimulation
Then R is included in equality Vj,5'. Rjj ' =j=7"

Back to the “Strategy” for Proving Equality

JF J J'
dtor
&» &
F e VRN VRN

JvoJ2 Js g1 Ja U3

Summary: to prove j = j’, find F-bisimulation R with R j j’
Given binary relation R on Jg
If Vj,j. R j j’ = Frel R (dtor j) (dtor j') | R F-bisimulation |
Then R is included in equality Vj,5'. Rjj ' =j=7"

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg — F Jg) satisfies:

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg — F Jg) satisfies:

dtor bijection

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg — F Jg) satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s: A—>F A), there exists a unique function coiter, with

F A F coiterg F JF

coiter
A——J¢

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg — F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s: A—>F A), there exists a unique function coiter, with

F A F coiterg F JF

coiter,
A——J¢

Coinduction: Given any binary relation R on Jg

R is an F-bisimulation
Vi, i Rjj =j=7

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s: A—>F A), there exists a unique function coiter, with

FAZCOME

s dtor

) _coiters I
Coinduction: Given any binary relation R on Jg

Vj,7'. Rj j" = Frel R (dtor j) (dtor j")
Vi, jRjj=7j=J'

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:

dtor bijection JF = the codatatype of F

Coiteration (Final Coalgebra Property): For all
(A, s: A—>F A), there exists a unique function coiter, with

FAZCOME

s dtor

) _coiters I
Coinduction: Given any binary relation R on Jg

Vj,7'. Rj j" = Frel R (dtor j) (dtor j")
Vi, jRjj=7j=J'

Example of Codatatype

Let Bbeafixedset. FA=BxA

Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F:

Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F: (b, _) for each be B

Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: ., foreach be B

Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: ., foreach be B

Who is Jg7?

Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: ., foreach be B

Who is Jg7?
Its elements have the form (b, (bo, ..., (b, ...

Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: ., foreach be B
Who is Jg7?
Its elements have the form (b, (bo, ..., (b, ...

l.e., essentially streams by by ... b, ...

Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: ., foreach be B
Who is Jg7?
Its elements have the form (b, (bo, ..., (b, ...
l.e., essentially streams by by ... b, ...

So Jg = Streamg

Example of Codatatype: Stream

Bfixed FA=BxA f=coitery Jg=Streamg

FA ik

dtor (f a) = (F f) (s a)

Example of Codatatype: Stream

Bfixed FA=BxA f=coitery Jg=Streamg

s dtor

BXA Bxf

dtor (f a) = (F f) (s a)

BXJF

Example of Codatatype: Stream

B fixed FA=BxA f=coitergs Jg=Streamg

hd = m; odtor tl = w9 o dtor

Define: hd? = T 0S8 t4 = T2 0S8
A ! Jr
s dtor
Bx A et B x Jg

dtor (f a) = (F f) (s a)

Example of Codatatype: Stream

B fixed FA=BxA f=coitergs Jg=Streamg

hd = m; odtor tl = w9 o dtor

Define: hd? = T 08 t14 = M9 0 8
A ! Jr
(hd t14) (hd,tl)
BxA et BxJe

dtor (f a) = (F f) (s)

Example of Codatatype: Stream

Bfixed FA=BxA f=coitery Jg=Streamg

hd = m; odtor tl = w5 o dtor

Define: hdd=mos tih=mos
A ! Je A : IF
» hd ¢4 hd
B A : b

dtor (f a) = (F f) (s a)

Example of Codatatype: Stream

B fixed FA=BxA f=coitery Jg=Streamg

hd = m; odtor tl = 7y o dtor

Define: hd =705 t'=mos
A f Jp A - I
» hd o4 hd
B A : b

hd (f a) =hd*a
th(fa)=f(t"a)

Example of Codatatype: Stream

B fixed FA=BxA f=coitery Jg=Streamg

hd = m; odtor tl = 7y o dtor

Define: hd =705 t'=mos
A f Jp A - I
» hd o4 hd
/

hd (fa)=hd*a [Standard stream coiteration

th(fa)=f(t"a)

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamg

JF i JF
dtor dtor

R is an F-bisimulation
Vi, i Rjj =j=J

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamg

JF L JF

dtor dtor

((bvj)v(blvj’)) = b:b’/\Rj j,

BXJF BXJF

R is an F-bisimulation
Vi, i Rjj =j=J

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamg
hd = 7, odtor tl = 75 o dtor

JF L JF

dtor dtor

((bvj)v(blvj’)) = b:b’/\Rj j,

BXJF BXJF

R is an F-bisimulation
Vi, i Rjj =j=7

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamg
hd = 7, odtor tl = 75 o dtor

JF & JF
(hd,tl) (hd,tl)

((b,5),(b',5")) = b=b'AR j j'

BXJF BXJF

R is an F-bisimulation
Vi, i Rjj =j=7

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = m; odtor tl = w5 o dtor

Jr & Jr
(hd,tl) (hd,tl)

((b,5),(b',5")) = b=b'AR j j'

BXJF BXJF

Vj,7'. Rjj'" = Frel R (dtor j) (dtor j')
Vi) Ry =7=7

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = m; odtor tl = w5 o dtor

Jr & Jr

(hd,tl) (hd,tl)

((b,5),(b',5")) = b=b'AR j j'

BXJF BXJF

Vj,j'. Rj j' = Frel R (hd j,tl j) (hd j". tl j")
Vi, it Rjj =7=J"

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = m; odtor tl = w5 o dtor

Jr & Jr

(hd,tl) (hd,tl)

((b,5),(b',5")) = b=b'AR j j'

BXJF BXJF

Vj,§' Rjj =hdj=hdj' A R(tlj) (tl ')
Vi Rjj ==

Concrete Example of Coiteration

ev : Streamp — Streamp
hd (ev j) =hd j
tl (evj) =ev (tl (tlj))

Concrete Example of Coiteration

ev : Streamp — Streamp
hd (ev j) =hd j
tl (evj) =ev (tl (tlj))
odd : Streampg — Streamp

hd (odd j) = hd (I 7)
tl (odd §) = odd (tl (tl §))

Concrete Example of Coiteration

ev : Streamp — Streamp
hd (ev j) =hd j
tl (evj) =ev (tl (tlj))

odd : Streampg — Streamp
hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl 5))

zip : Streamp x Streamp — Streamp
hd (zip (j1,j2)) = hd j1
tl (zip (J1, J2)) = zip (J2, tl j1)

Pattern-Based Incremental Coinduction

zip (ev j, 0dd) = j

Pattern-Based Incremental Coinduction

zip (ev j, 0dd) = j

tl (zip (ev j,odd j)) =tl j hd (zip (ev j,0odd j)) = hd j

Pattern-Based Incremental Coinduction

zip (ev j, 0dd) = j

tl (zip (ev j,odd j)) =tl j hd (zip (ev j,odd j)) = hd j

Pattern-Based Incremental Coinduction

zip (ev j, 0dd) = j

zip (odd j, tl (evj)) =tlj hd (zip (ev j,0dd j)) = hd j

Pattern-Based Incremental Coinduction

zip (ev j, 0dd) = j

zip (odd j, ev (tl (tl 7))) =tl j hd (zip (ev j,0dd j)) = hd j

Pattern-Based Incremental Coinduction

zip (ev j,0dd j) =
zip (odd j, ev (tl (tl 7))) =tl j hd (zip (ev j,0dd j)) = hd j

tl (zip (odd 7, ev (tl (tl 7))) =tl (tl 5) hd ...=hd (tlj)

Pattern-Based Incremental Coinduction

zip (ev j,0dd j) =
zip (odd j, ev (tl (tl 7))) =tl j hd (zip (ev j,odd j)) = hd j

zip (ev (tl (tl j)),odd (tl (tl 7))) =tl(tlj) hd ...=hd (tl5)

Pattern-Based Incremental Coinduction

zip (ev j,0dd j) =
zip (odd j, ev (tl (tl 7))) =tl j hd (zip (ev j,odd j)) = hd j

zip (ev (tl (tl 7)), odd (tl (tl j))) =tl(tl j) hd ...=hd (tlj)

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, ev (tl (tl 7))) =tl j hd (zip (ev j,odd j)) = hd j

zip (ev (tl (tl 7)), odd (tl (tl j))) =tl(tl j) hd ...=hd (tlj)
Bisimulation: R 71 jo =

J1 = zip (ev ja, 0dd js) Vv
5. j1 =zip (odd j, ev (tl (tj))) A j2=tlj

Universe of (Co)Datatypes

Natural functors are a class of functors

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A~ {*} + Bx A

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A~ {*} + Bx A
but B ~ Listg is also a natural functor

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A~ {*} + Bx A
but B ~ Listg is also a natural functor
and similarly for B — Streamp

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A~ {*} + Bx A
but B ~ Listg is also a natural functor
and similarly for B — Streamp

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors
User can write high-level specifications:

codatatype Stream A = Cons (hd : A) (tl: List A)

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors
User can write high-level specifications:

codatatype Stream A = Cons (hd : A) (tl: List A)

In the background:

e |sabelle parses this into a natural functor: B+ B x A

e Then infers high-level principles for (co)recursion and
(co)induction for Stream

e Finally, Stream is itself registered as a natural functor

Examples

datatype List A = Nil | Cons A (List A)

Examples

datatype List A = Nil | Cons A (List A)

codatatype Lazy_List A = Nil | Cons A (List A)

Examples
datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)

datatype X A =Leaf A | Node (X A) (X A)

Examples
datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)

datatype BTree A = Leaf A | Node (X A) (X A)

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)

datatype X A = Node A (List (X A))

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)

datatype Tree A = Node A (List (Tree A))

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
datatype Tree A = Node A (List (Tree A))

finite-depths, finitely branching
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
datatype Tree A = Node A (List (Tree A))

finite-depths, infinitely branching
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
datatype Tree A = Node A (Lazy_List (Tree A))

finite-depths, infinitely branching
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
datatype Tree A = Node A (Lazy_List (Tree A))

infinite-depths, infinitely branching
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
codatatype Tree A = Node A (Lazy_List (Tree A))

infinite-depths, infinitely branching
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
codatatype Tree A = Node A (Lazy_List (Tree A))

infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)

codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
codatatype Tree A = Node A (Countable Set (Tree A))

infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
codatatype Tree A = Node A (Sety, (Tree A))

infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
codatatype Tree A = Node A (Multi_Set (Tree A))

infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)
codatatype Tree A = Node A (Fuzzy_Set (Tree A))

infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)

codatatype Lazy_List A = Nil | Cons A (List A)

datatype BTree A = Leaf A | Node (X A) (X A)
codatatype Tree A = Node A (PLUG_-YOUR_OWN (Tree A))

infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)

codatatype Tree A = Node A (PLUG_-YOUR_OWN (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

e Show a set operator to be a (bounded) natural functor
e Register it

e Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype X A =
Elements (Finite_Set (X A))

Examples

datatype Hereditarily_Finite_Set A =
Elements (Finite_Set (Hereditarily_Finite_Set A))

Examples

datatype Hereditarily_Finite_Set A =
Elements (Finite_Set (Hereditarily_Finite_Set A))

. in the presence of the Foundation Axiom

Examples

codatatype Hereditarily_Finite_Set A =
Elements (Finite_Set (Hereditarily_Finite_Set A))

. in the presence of Aczel's Anti-Foundation Axiom

Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users

Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe
The proof assistant Isabelle/HOL represents this universe and

makes it available to the users with a lot of sugar to hide the
category theory ©

Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe
The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the

category theory ©

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe
The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the

category theory ©

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe
The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the

category theory ©

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Our work:

Natural functors:
LICS'12, ESOP'15
Flexible corecursion:
ICFP'15

Isabelle implementation:

ITP'14
Case study:
IJCAR'14,

Incremental coinduction:

FOSSACS'10
Non-free datatypes:

LICS'10, ICFP'11, CPP'13

Relevant Literature

Other people’s work:
Isabelle/ZF codata (Paulson)
Containers

(Abbott, Altenkirch, Ghani)

Fibrations

(Hermida, Jacobs)

— Flexible Corecursion
(Turi/Plotkin, Bartels, Jacobs,
Milius, Hinze, Atkey/McBride)
Flexible Coinduction
(Rot, Bonsangue, Rutten, Silva,
Rosu, Endrullis, Hendriks,
Hur/Dreyer /Vafeiadis)
Corecursion in MiniAgda, Agda
(Abel)

