
A Concrete Introduction to
Abstract Coinductive Datatypes

Andrei Popescu

Middlesex University
School of Science and Technology
Foundations of Computing Group

This is continuation of

www.andreipopescu.uk/resourcesForStudents/

introductionToDatatypes.pdf

See also

www.andreipopescu.uk/resourcesForStudents/

codatatypesInIsabelleHOL.pdf

www.andreipopescu.uk/slides/ESOP2015-slides.pdf

www.andreipopescu.uk/resourcesForStudents/introductionToDatatypes.pdf
www.andreipopescu.uk/resourcesForStudents/introductionToDatatypes.pdf
www.andreipopescu.uk/resourcesForStudents/codatatypesInIsabelleHOL.pdf
www.andreipopescu.uk/resourcesForStudents/codatatypesInIsabelleHOL.pdf
www.andreipopescu.uk/slides/ESOP2015-slides.pdf

Recall: It’s All About Shape and Content

Shapes

∎

−

●

−

▲

− −

♠

− −

♣

− − −

∎

−

●

a

▲

a1 a2

♠

a1 a2

♣

a1 a2 a3

Shapes filled with content from a set A = {a1, a2, . . .}

Recall: It’s All About Shape and Content

Shapes

∎

−

●

−

▲

− −

♠

− −

♣

− − −

∎

−

●

a

▲

a1 a2

♠

a1 a2

♣

a1 a2 a3

Shapes filled with content from a set A = {a1, a2, . . .}

Recall: Natural Functors on Set

Set = the class of all sets

It comes with a set of shapes, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape, say ♣

− − −
a filling with content from A, say

Recall: Natural Functors on Set

F ∶ Set→ Set is a natural functor if:

It comes with a set of shapes, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape, say ♣

− − −
a filling with content from A, say

Recall: Natural Functors on Set

F ∶ Set→ Set is a natural functor if:

It comes with a set of shapes

, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape, say ♣

− − −
a filling with content from A, say

Recall: Natural Functors on Set

F ∶ Set→ Set is a natural functor if:

It comes with a set of shapes, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape, say ♣

− − −
a filling with content from A, say

Recall: Natural Functors on Set

F ∶ Set→ Set is a natural functor if:

It comes with a set of shapes, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape

, say ♣

− − −
a filling with content from A, say

Recall: Natural Functors on Set

F ∶ Set→ Set is a natural functor if:

It comes with a set of shapes, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape, say ♣

− − −

a filling with content from A, say

Recall: Natural Functors on Set

F ∶ Set→ Set is a natural functor if:

It comes with a set of shapes, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape, say ♣

− − −
a filling with content from A

, say

Recall: Natural Functors on Set

F ∶ Set→ Set is a natural functor if:

It comes with a set of shapes, say
∎

−

●

−

▲

− −

♠

− −

♣

− − −

Each element x ∈ FA consists of:

a choice of a shape, say ♣

a1 a2 a3
a filling with content from A, say

Recall: Examples of Natural Functors

FA = N ×A
●0

−

●1

−

●2

−
. . .

FA = N +A
●

−
∎0 ∎1 . . .

FA = ListA ●0
●1

−

●2

− −

●3

− − −
. . .

Recall: Examples of Natural Functors

FA = N ×A
●0

a

●1

a

●2

a
. . .

FA = N +A
●

a
∎0 ∎1 . . .

FA = ListA ●0
●1

a

●2

a1 a2

●3

a1 a2 a3

. . .

Functorial Action (Mapper)

A

f

��
B

FA

F f

��
FB

♣

a1 a2 a3

♣

f a1 f a2 f a3

Keep the same shape
Apply f to the content

Functorial Action (Mapper)

A

f

��
B

FA

F f

��
FB

♣

a1 a2 a3

♣

f a1 f a2 f a3

Keep the same shape
Apply f to the content

Functorial Action (Mapper)

A

f

��
B

FA

F f

��
FB

♣

a1 a2 a3

♣

f a1 f a2 f a3

Keep the same shape
Apply f to the content

Functorial Action (Mapper)

A

f

��
B

FA

F f

��
FB

♣

a1 a2 a3

♣

f a1 f a2 f a3

Keep the same shape
Apply f to the content

Atoms

♣

a1 a2 a3 {a1, a2, a3}

FA
FatomsA // P A

FB P B

Atoms

♣

a1 a2 a3

{a1, a2, a3}

FA
FatomsA // P A

FB P B

Atoms

♣

a1 a2 a3 {a1, a2, a3}

FA
FatomsA // P A

FB P B

Natural Functors
F ∶ Set→ Set

Functoriality: For all A
f→ B, we have FA

F f
⇒ FB

such that:

F idA = idFA

F (g ○ f) = F g ○ F f

Naturality: For all A, we have FA
FatomsA⇒ P A such

that, for all A
f→ B:

image f ○ FatomsA = FatomsB ○ image f

Examples

A
f
⇒ B FA

F f
⇒ FB FA

Fatoms⇒ P A

FA = N ×A Ff (n, a) = (n, f a)
Fatoms (n, a) = {a}

FA = N +A Ff (Left n) = Left n Ff (Right a) = Right (f a)
Fatoms (Left n) = ∅ Fatoms (Right a) = {a}

FA = ListA
Ff (a1 ⋅ a2 ⋅ . . . ⋅ an) = f a1 ⋅ f a2 . . . ⋅ f an
Fatoms (a1 ⋅ a2 ⋅ . . . ⋅ an) = {a1, a2, . . . , an}

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

The shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

The shapes of F: ∎ ▼ ▲

− −

♣

− − −

Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −

Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

▲ − −

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

▲ ∎ −

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

▲ ∎ ♣

− − − − −

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

The leaves are always empty-content shapes

Recall: Iterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

Define IF = the set of all such finitary couplings

Recall: Properties of IF
Given a natural functor F, (IF, ctor ∶ F IF → IF) satisfies:

ctor bijection IF = the datatype of F

Iteration (Initial Algebra Property): For all (A, s ∶ F A→ A),
there exists a unique function iters such that

F IF

ctor

��

F iters // F A

s

��
IF iters

// A

Induction: Given any predicate ϕ on IF

∀x ∈ F IF. (∀i ∈ Fatoms x. ϕ i) ⇒ ϕ (ctor x)
∀i ∈ IF. ϕ i

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

The shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

The shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −

Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −

Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

− − −

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

▲ − −

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

▲ ∎ −

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot

until there are no lingering slots left!

♣

▲ ∎ ♣

− − − − −

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

− − −

The leaves are always empty-content shapes

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ − − ▼ ∎

− − −

Allow infinite couplings

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▲ − ▼ ∎

− −

−

Allow infinite couplings

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▲ ● ▼ ∎

− − −

Allow infinite couplings

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▲ ● ▼ ∎

⋮ ⋮ ⋮

Allow infinite couplings

Coiterating Shape Composition

Natural functor F ∶ Set→ Set

Copies of the shapes of F: ∎ ▼ ●

−

▲

− −

♣

− − −
Put them together by plugging in shape for content slot
until there are no lingering slots left!

♣

▲ ∎ ♣

∎ ▲ ● ▼ ∎

⋮ ⋮ ⋮

Define JF = the set of all such (possibly) infinitary couplings

Recall: Properties of IF: Bijectivity

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

♣

▲ ∎ ♣

∎ ▼ ∎ ▼ ∎

F IF

ctor

��
IF

dtor

OO

ctor and dtor are mutually inverse bijections

A similar property holds for JF, where we use the
same notations for constructor and destructor

Recall:

Properties of JF: Bijectivity

♣

▲ ∎ ♣

∎ ⋮ ⋮ ▼ ∎

♣

▲ ∎ ♣

∎ ⋮ ⋮ ▼ ∎

F JF

ctor

��
JF

dtor

OO

ctor and dtor are mutually inverse bijections

A similar property holds for JF, where we use the
same notations for constructor and destructor

Recall:

Properties of JF: Bijectivity

♣

▲ ∎ ♣

∎ ⋮ ⋮ ▼ ∎

♣

▲ ∎ ♣

∎ ⋮ ⋮ ▼ ∎

F JF

ctor

��
JF

dtor

OO

ctor and dtor are mutually inverse bijections
A similar property holds for JF, where we use the
same notations for constructor and destructor

IF is embedded in JF

F IF

ctor

��

F ι // F JF

ctor

��
IF

ι //

dtor

OO

JF

dtor

OO

ι = iterctor∶F JF→F JF

IF is embedded in JF

F IF

ctor

��

F ι // F JF

ctor

��
IF

ι //

dtor

OO

JF

dtor

OO

ι = iterctor∶F JF→F JF

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A

F JF

A

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A

F JF

A
f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A

F JF

A
f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A

F JF

A
f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A F JF

ctor

��
A

f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A
F f

// F JF

ctor

��
A

f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A
F f

// F JF

ctor

��
A

f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A
F f

// F JF

ctor

��
A

f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A
F f

// F JF

ctor

��
A

f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense

But computation has made progress

Properties of JF: Coiteration

♣

a1 a2 a3

a

− − −

F A
F f

// F JF

ctor

��
A

f //

s

OO

JF

♣

f a1 f a2 f a3

♣

f a1 f a2 f a3

a1, a2, a3 are not “smaller” than a in any sense
But computation has made progress

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

s a

a1 a2 a3

a1,1 a1,2 a2,1 a2,2 a2,3

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

s a

a1 a2 a3

a1,1 a1,2 a2,1 a2,2 a2,3

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

s a

a1 a2 a3

a1,1 a1,2 a2,1 a2,2 a2,3

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

♣

a1 a2 a3

a1,1 a1,2 a2,1 a2,2 a2,3

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

♣

s a1 s a2 s a3

a1,1 a1,2 a2,1 a2,2 a2,3

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

♣

♠ ∎ ▲

a1,1 a1,2 a2,1 a2,2 a2,3

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

a

− − −

F A

A
f //

s

>>

JF

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

s a = the seed encoding the
growth of the tree f a

♣

♠ ∎ ▲

⋮ ⋮ ⋮ ⋮ ⋮

Properties of JF: Coiteration

Given a natural functor F, (JF, dtor ∶ JF → F JF)

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters // F JF

ctor

��
A

s

OO

coiters // JF

JF = the codatatype of F

Properties of JF: Coiteration

Given a natural functor F, (JF, dtor ∶ JF → F JF)

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters // F JF

A

s

OO

coiters // JF

dtor

OO

JF = the codatatype of F

Properties of JF: Coiteration

Given a natural functor F, (JF, dtor ∶ JF → F JF)

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters // F JF

A

s

OO

coiters // JF

dtor

OO

JF = the codatatype of F

The IF to JF embedding revisited

F IF

ctor

��

F ι // F JF

ctor

��
IF

ι //

dtor

OO

JF

dtor

OO

ι can be regarded as defined by
iteration on IF

ι = iterctor

The IF to JF embedding revisited

F IF

ctor

��

F ι // F JF

ctor

��
IF

ι //

dtor

OO

JF

dtor

OO

ι can be regarded as defined by
iteration on IF but also by coiteration on JF!

ι = iterctor = coiterdtor

Properties of JF: Coinduction

j

j1 j2 j3

j1,1 j1,2

j′

j′1 j′2 j′3

j′1,1 j′1,2

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Want: j = j′
j2 = j′2
j3 = j′3

Properties of JF: Coinduction

j

j1 j2 j3

j1,1 j1,2

j′

j′1 j′2 j′3

j′1,1 j′1,2

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Want: j = j′

j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

j1 j2 j3

j1,1 j1,2

♣

j′1 j′2 j′3

j′1,1 j′1,2

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Want: j = j′

j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

j1 j2 j3

j1,1 j1,2

♣

j′1 j′2 j′3

j′1,1 j′1,2

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Suffices: j1 = j′1
j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

▲ j2 j3

j1,1 j1,2

♣

▲ j′2 j′3

j′1,1 j′1,2

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Suffices: j1 = j′1
j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

▲ j2 j3

j1,1 j1,2

♣

▲ j′2 j′3

j′1,1 j′1,2

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Suffices: j1,1 = j′1,1, j1,2 = j′1,2
j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

▲ ⋮ ⋮

⋮ ⋮

♣

▲ ⋮ ⋮

⋮ ⋮

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Suffices: j1,1 = j′1,1, j1,2 = j′1,2
j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

▲ ⋮ ⋮

⋮ ⋮

♣

▲ ⋮ ⋮

⋮ ⋮

If we can stay in the game indefinitely, then equality holds!

But how to show we can “stay in the game”?
By exhibiting a “strategy”

Suffices: j1,1 = j′1,1, j1,2 = j′1,2
j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

▲ ⋮ ⋮

⋮ ⋮

♣

▲ ⋮ ⋮

⋮ ⋮

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Suffices: j1,1 = j′1,1, j1,2 = j′1,2
j2 = j′2
j3 = j′3

Properties of JF: Coinduction

♣

▲ ⋮ ⋮

⋮ ⋮

♣

▲ ⋮ ⋮

⋮ ⋮

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

By exhibiting a “strategy”

Suffices: j1,1 = j′1,1, j1,2 = j′1,2
j2 = j′2
j3 = j′3

But First: Relators

A

R

B

FA

FrelR

FB

♣

− − −

♣

− − −

Two elements of FA and FB are related by Frel R iff
they have the same shape
and the contents from corresponding slots are related by R
R a1 b1, R a2 b2, R a3 b3

But First: Relators

A

R

B

FA

FrelR

FB

♣

− − −

♣

− − −

Two elements of FA and FB are related by Frel R iff
they have the same shape
and the contents from corresponding slots are related by R
R a1 b1, R a2 b2, R a3 b3

But First: Relators

A

R

B

FA

FrelR

FB

♣

− − −

♣

− − −

Two elements of FA and FB are related by Frel R iff
they have the same shape
and the contents from corresponding slots are related by R
R a1 b1, R a2 b2, R a3 b3

But First: Relators

A

R

B

FA

FrelR

FB

♣

− − −

♣

− − −

Two elements of FA and FB are related by Frel R iff

they have the same shape
and the contents from corresponding slots are related by R
R a1 b1, R a2 b2, R a3 b3

But First: Relators

A

R

B

FA

FrelR

FB

♣

− − −

♣

− − −

Two elements of FA and FB are related by Frel R iff
they have the same shape

and the contents from corresponding slots are related by R
R a1 b1, R a2 b2, R a3 b3

But First: Relators

A

R

B

FA

FrelR

FB

♣

a1 a2 a3

♣

b1 b2 b3

Two elements of FA and FB are related by Frel R iff
they have the same shape
and the contents from corresponding slots are related by R

R a1 b1, R a2 b2, R a3 b3

But First: Relators

A

R

B

FA

FrelR

FB

♣

a1 a2 a3

♣

b1 b2 b3

Two elements of FA and FB are related by Frel R iff
they have the same shape
and the contents from corresponding slots are related by R
R a1 b1, R a2 b2, R a3 b3

Relator Defined from Mapper

z = ♣

(a1, b1) (a2, b2) (a3, b3)

x = ♣

a1 a2 a3

y = ♣

b1 b2 b3

R relation between A and B, x ∈ F A, y ∈ F B

Frel R x y defined as
∃z ∈ F {(a, b) ∣ R a b}. F π1 z = x ∧ F π2 z = y

Relator Defined from Mapper

z = ♣

(a1, b1) (a2, b2) (a3, b3)

x = ♣

a1 a2 a3

y = ♣

b1 b2 b3

R relation between A and B, x ∈ F A, y ∈ F B

Frel R x y defined as

∃z ∈ F {(a, b) ∣ R a b}. F π1 z = x ∧ F π2 z = y

Relator Defined from Mapper

z = ♣

(a1, b1) (a2, b2) (a3, b3)

x = ♣

a1 a2 a3

y = ♣

b1 b2 b3

R relation between A and B, x ∈ F A, y ∈ F B

Frel R x y defined as
∃z ∈ F {(a, b) ∣ R a b}. F π1 z = x ∧ F π2 z = y

Relator Defined from Mapper

z = ♣

(a1, b1) (a2, b2) (a3, b3)

x = ♣

a1 a2 a3

y = ♣

b1 b2 b3

R relation between A and B, x ∈ F A, y ∈ F B

Frel R x y defined as
∃z ∈ F {(a, b) ∣ R a b}. F π1 z = x ∧ F π2 z = y

Relators for the Running Examples

R relation between A and B

Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒

(m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A

Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒

(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA

Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒

m = n ∧ (∀i. R ai bi)

Relators for the Running Examples

R relation between A and B
Frel R relation between FA and FB

FA = N ×A Frel R (m, a) (n, b) ⇐⇒ (m = n ∧ R a b)

FA = N +A
Frel R u v⇐⇒
(∃n. u = v = Left n) ∨
(∃a, b. u = Right a ∧ v = Right b ∧ R a b)

FA = ListA
Frel R (a1 ⋅ a2 ⋅ . . . ⋅ am) (b1 ⋅ b2 ⋅ . . . ⋅ bn) ⇐⇒
m = n ∧ (∀i. R ai bi)

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,
Given binary relation R on JF
If ∀j, j′. R j j′

Then R is included in equality

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,

Given binary relation R on JF

If ∀j, j′. R j j′

Then R is included in equality

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,

Given binary relation R on JF
If ∀j, j′. R j j′

Then R is included in equality

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,

Given binary relation R on JF
If ∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′)

Then R is included in equality

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,

Given binary relation R on JF
If ∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′)
Then R is included in equality

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,

Given binary relation R on JF
If ∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′)
Then R is included in equality ∀j, j′. R j j′⇒ j = j′

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,

Given binary relation R on JF
If ∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′) R F-bisimulation
Then R is included in equality ∀j, j′. R j j′⇒ j = j′

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′,
Given binary relation R on JF
If ∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′) R F-bisimulation
Then R is included in equality ∀j, j′. R j j′⇒ j = j′

Back to the “Strategy” for Proving Equality

JF

dtor

��
F JF

j j′

♣

j1 j2 j3

♣

j′1 j′2 j′3

Summary: to prove j = j′, find F-bisimulation R with R j j′

Given binary relation R on JF
If ∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′) R F-bisimulation
Then R is included in equality ∀j, j′. R j j′⇒ j = j′

Summary for JF
Given a natural functor F, (JF, dtor ∶ JF → F JF) satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters// F JF

ctor

��
A

s

OO

coiters // JF

Coinduction: Given any binary relation R on JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Summary for JF
Given a natural functor F, (JF, dtor ∶ JF → F JF) satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters// F JF

A

s

OO

coiters // JF

dtor

OO

Coinduction: Given any binary relation R on JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Summary for JF
Given a natural functor F, (JF, dtor ∶ JF → F JF) satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters// F JF

A

s

OO

coiters // JF

dtor

OO

Coinduction: Given any binary relation R on JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Summary for JF
Given a natural functor F, (JF, dtor ∶ JF → F JF) satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters// F JF

A

s

OO

coiters // JF

dtor

OO

Coinduction: Given any binary relation R on JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Summary for JF
Given a natural functor F, (JF, dtor ∶ JF → F JF) satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters// F JF

A

s

OO

coiters // JF

dtor

OO

Coinduction: Given any binary relation R on JF

∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′)
∀j, j′. R j j′⇒ j = j′

Summary for JF
Given a natural functor F, (JF, dtor ∶ JF → F JF) satisfies:

dtor bijection JF = the codatatype of F

Coiteration (Final Coalgebra Property): For all
(A, s ∶ A→ F A), there exists a unique function coiters with

F A
F coiters// F JF

A

s

OO

coiters // JF

dtor

OO

Coinduction: Given any binary relation R on JF

∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′)
∀j, j′. R j j′⇒ j = j′

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F:

(b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?

Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .

I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .

So JF = StreamB

Example of Codatatype

Let B be a fixed set. FA = B ×A

The shapes of F: (b,) for each b ∈ B

Or, graphically: ●b

−

for each b ∈ B

Who is JF?
Its elements have the form (b1, (b2, . . . , (bn, . . .
I.e., essentially streams b1 ⋅ b2 ⋅ . . . ⋅ bn ⋅ . . .
So JF = StreamB

Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
hdA = π1 ○ s tlA = π2 ○ s

A

s

��

f // JF

dtor

��
F A

F f // F JF

∀a ∈ A. dtor (f a) = (F f) (s a)
sasasasasas

Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
hdA = π1 ○ s tlA = π2 ○ s

A

s

��

f // JF

dtor

��
B ×A B×f // B × JF

∀a ∈ A. dtor (f a) = (F f) (s a)
sasasasasas

Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
hdA = π1 ○ s tlA = π2 ○ s

A

s

��

f // JF

dtor

��
B ×A B×f // B × JF

∀a ∈ A. dtor (f a) = (F f) (s a)
sasasasasas

Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
hdA = π1 ○ s tlA = π2 ○ s

A

⟨hdA,tlA⟩

��

f // JF

⟨hd,tl⟩

��
B ×A B×f // B × JF

∀a ∈ A. dtor (f a) = (F f) (s a)
sasasasasas

Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
hdA = π1 ○ s tlA = π2 ○ s

A

hdA

##

f // JF

hd

��
B

A

tlA

��

f // JF

hd

��
A

f // B
∀a ∈ A. dtor (f a) = (F f) (s a)
sasasasasas

Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
hdA = π1 ○ s tlA = π2 ○ s

A

hdA

##

f // JF

hd

��
B

A

tlA

��

f // JF

hd

��
A

f // B

∀a ∈ A. hd (f a) = hdA a

Standard stream coiteration

∀a ∈ A. tl (f a) = f (tlA a)

Example of Codatatype: Stream

B fixed FA = B ×A f = coiters JF = StreamB

Define:
hd = π1 ○ dtor tl = π2 ○ dtor
hdA = π1 ○ s tlA = π2 ○ s

A

hdA

##

f // JF

hd

��
B

A

tlA

��

f // JF

hd

��
A

f // B

∀a ∈ A. hd (f a) = hdA a Standard stream coiteration

∀a ∈ A. tl (f a) = f (tlA a)

Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

dtor

��

JF

dtor

��
F JF

Frel R
F JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

dtor

��

JF

dtor

��
B × JF

((b,j),(b′,j′)) ↦ b=b′∧R j j′
B × JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

dtor

��

JF

dtor

��
B × JF

((b,j),(b′,j′)) ↦ b=b′∧R j j′
B × JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

⟨hd,tl⟩

��

JF

⟨hd,tl⟩

��
B × JF

((b,j),(b′,j′)) ↦ b=b′∧R j j′
B × JF

R is an F-bisimulation

∀j, j′. R j j′⇒ j = j′

Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

⟨hd,tl⟩

��

JF

⟨hd,tl⟩

��
B × JF

((b,j),(b′,j′)) ↦ b=b′∧R j j′
B × JF

∀j, j′. R j j′⇒ Frel R (dtor j) (dtor j′)
∀j, j′. R j j′⇒ j = j′

Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

⟨hd,tl⟩

��

JF

⟨hd,tl⟩

��
B × JF

((b,j),(b′,j′)) ↦ b=b′∧R j j′
B × JF

∀j, j′. R j j′⇒ Frel R (hd j, tl j) (hd j′, tl j′)
∀j, j′. R j j′⇒ j = j′

Example of Codatatype: Stream

B fixed FA = B ×A JF = StreamB

hd = π1 ○ dtor tl = π2 ○ dtor

JF
R

⟨hd,tl⟩

��

JF

⟨hd,tl⟩

��
B × JF

((b,j),(b′,j′)) ↦ b=b′∧R j j′
B × JF

∀j, j′. R j j′⇒ hd j = hd j′ ∧ R (tl j) (tl j′)
∀j, j′. R j j′⇒ j = j′

Concrete Example of Coiteration

ev ∶ StreamB → StreamB

hd (ev j) = hd j
tl (ev j) = ev (tl (tl j))

odd ∶ StreamB → StreamB

hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl j))

zip ∶ StreamB × StreamB → StreamB

hd (zip (j1, j2)) = hd j1
tl (zip (j1, j2)) = zip (j2, tl j1)

Concrete Example of Coiteration

ev ∶ StreamB → StreamB

hd (ev j) = hd j
tl (ev j) = ev (tl (tl j))

odd ∶ StreamB → StreamB

hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl j))

zip ∶ StreamB × StreamB → StreamB

hd (zip (j1, j2)) = hd j1
tl (zip (j1, j2)) = zip (j2, tl j1)

Concrete Example of Coiteration

ev ∶ StreamB → StreamB

hd (ev j) = hd j
tl (ev j) = ev (tl (tl j))

odd ∶ StreamB → StreamB

hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl j))

zip ∶ StreamB × StreamB → StreamB

hd (zip (j1, j2)) = hd j1
tl (zip (j1, j2)) = zip (j2, tl j1)

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

tl (zip (ev j, odd j)) = tl j hd (zip (ev j, odd j)) = hd j

tl (zip (odd j, ev (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

tl (zip (ev j, odd j)) = tl j hd (zip (ev j, odd j)) = hd j

tl (zip (odd j, ev (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

tl (zip (ev j, odd j)) = tl j hd (zip (ev j, odd j)) = hd j

tl (zip (odd j, ev (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, tl (ev j)) = tl j hd (zip (ev j, odd j)) = hd j

tl (zip (odd j, ev (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, ev (tl (tl j))) = tl j hd (zip (ev j, odd j)) = hd j

tl (zip (odd j, ev (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, ev (tl (tl j))) = tl j hd (zip (ev j, odd j)) = hd j

tl (zip (odd j, ev (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, ev (tl (tl j))) = tl j hd (zip (ev j, odd j)) = hd j

zip (ev (tl (tl j)), odd (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, ev (tl (tl j))) = tl j hd (zip (ev j, odd j)) = hd j

zip (ev (tl (tl j)), odd (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, ev (tl (tl j))) = tl j hd (zip (ev j, odd j)) = hd j

zip (ev (tl (tl j)), odd (tl (tl j))) = tl (tl j) hd . . . = hd (tl j)

Bisimulation: R j1 j2 ≡
j1 = zip (ev j2, odd j2) ∨
∃j. j1 = zip (odd j, ev (tl (tl j))) ∧ j2 = tl j

Universe of (Co)Datatypes

Natural functors are a class of functors

containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A
but B ↦ ListB is also a natural functor
and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.

closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A
but B ↦ ListB is also a natural functor
and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A
but B ↦ ListB is also a natural functor
and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A

but B ↦ ListB is also a natural functor
and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A
but B ↦ ListB is also a natural functor

and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A
but B ↦ ListB is also a natural functor
and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, ListB is the datatype of A↦ {∗} +B ×A
but B ↦ ListB is also a natural functor
and similarly for B ↦ StreamB

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

User can write high-level specifications:

codatatype StreamA = Cons (hd ∶ A) (tl ∶ List A)

In the background:

� Isabelle parses this into a natural functor: B ↦ B ×A

� Then infers high-level principles for (co)recursion and
(co)induction for Stream

� Finally, Stream is itself registered as a natural functor

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

User can write high-level specifications:

codatatype StreamA = Cons (hd ∶ A) (tl ∶ List A)

In the background:

� Isabelle parses this into a natural functor: B ↦ B ×A

� Then infers high-level principles for (co)recursion and
(co)induction for Stream

� Finally, Stream is itself registered as a natural functor

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

User can write high-level specifications:

codatatype StreamA = Cons (hd ∶ A) (tl ∶ List A)

In the background:

� Isabelle parses this into a natural functor: B ↦ B ×A

� Then infers high-level principles for (co)recursion and
(co)induction for Stream

� Finally, Stream is itself registered as a natural functor

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype X A = Leaf A ∣ Node (X A) (X A)

datatype X A = Node A (List (X A))

finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype X A = Leaf A ∣ Node (X A) (X A)

datatype X A = Node A (List (X A))

finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype X A = Leaf A ∣ Node (X A) (X A)

datatype X A = Node A (List (X A))

finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

datatype X A = Node A (List (X A))

finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

datatype X A = Node A (List (X A))

finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

datatype TreeA = Node A (List (Tree A))

finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

datatype TreeA = Node A (List (Tree A))
finite-depths, finitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

datatype TreeA = Node A (List (Tree A))
finite-depths, infinitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

datatype TreeA = Node A (Lazy List (Tree A))
finite-depths, infinitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

datatype TreeA = Node A (Lazy List (Tree A))
infinite-depths, infinitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (Lazy List (Tree A))
infinite-depths, infinitely branching

unordered

A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (Lazy List (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (Countable Set (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (Setk (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (Multi Set (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (Fuzzy Set (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (PLUG YOUR OWN (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

datatype ListA = Nil ∣ Cons A (List A)

codatatype Lazy ListA = Nil ∣ Cons A (List A)

datatype BTreeA = Leaf A ∣ Node (X A) (X A)

codatatype TreeA = Node A (PLUG YOUR OWN (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

� Show a set operator to be a (bounded) natural functor

� Register it

� Then Isabelle will allow nesting it in (co)datatype
expressions

Examples

co

datatype X A =
Elements (Finite Set (X A))

. . . in the presence of the Foundation Axiom

Examples

co

datatype Hereditarily Finite SetA =
Elements (Finite Set (Hereditarily Finite Set A))

. . . in the presence of the Foundation Axiom

Examples

co

datatype Hereditarily Finite SetA =
Elements (Finite Set (Hereditarily Finite Set A))

. . . in the presence of the Foundation Axiom

Examples

codatatype Hereditarily Finite SetA =
Elements (Finite Set (Hereditarily Finite Set A))

. . . in the presence of Aczel’s Anti-Foundation Axiom

Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users

with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Summary
Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the
category theory ,

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete

Relevant Literature

Our work:
Natural functors:
LICS’12, ESOP’15
Flexible corecursion:
ICFP’15
Isabelle implementation:
ITP’14
Case study:
IJCAR’14,
Incremental coinduction:
FOSSACS’10
Non-free datatypes:
LICS’10, ICFP’11, CPP’13

●

− −

−

− −

Other people’s work:
Isabelle/ZF codata (Paulson)
Containers
(Abbott, Altenkirch, Ghani)
Fibrations
(Hermida, Jacobs)
Flexible Corecursion
(Turi/Plotkin, Bartels, Jacobs,
Milius, Hinze, Atkey/McBride)
Flexible Coinduction
(Rot, Bonsangue, Rutten, Silva,
Roşu, Endrullis, Hendriks,
Hur/Dreyer/Vafeiadis)
Corecursion in MiniAgda, Agda
(Abel)

