A Concrete Introduction to Abstract Coinductive Datatypes

Andrei Popescu

Middlesex University
School of Science and Technology
Foundations of Computing Group

This is continuation of

www.andreipopescu.uk/resourcesForStudents/
introductionToDatatypes.pdf

See also

www.andreipopescu.uk/resourcesForStudents/codatatypesInIsabelleHOL.pdf

www.andreipopescu.uk/slides/ESOP2015-slides.pdf

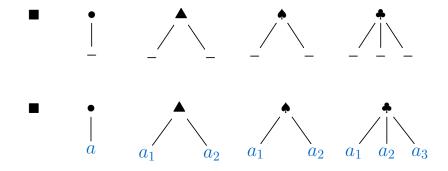
Recall: It's All About Shape and Content

Shapes



Recall: It's All About Shape and Content

Shapes



Shapes filled with content from a set $A = \{a_1, a_2, \ldots\}$

Set = the class of all sets

 $F : Set \rightarrow Set$ is a natural functor if:

F: Set → Set is a natural functor if: It comes with a set of shapes

F: Set → Set is a natural functor if:

It comes with a set of shapes, say

 $F : Set \rightarrow Set$ is a natural functor if:

It comes with a set of shapes, say

Each element $x \in F A$ consists of:

a choice of a shape

 $F : Set \rightarrow Set$ is a natural functor if:

It comes with a set of shapes, say

Each element $x \in F A$ consists of:

a choice of a shape, say

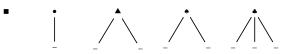
F: Set → Set is a natural functor if: It comes with a set of shapes, say

Each element $x \in FA$ consists of:

a choice of a shape, say

a filling with content from A

F: Set → Set is a natural functor if: It comes with a set of shapes, say



Each element $x \in F A$ consists of:

a choice of a shape, say

a filling with content from A, say

Recall: Examples of Natural Functors

$$FA = \mathbb{N} \times A$$

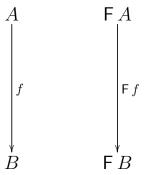
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

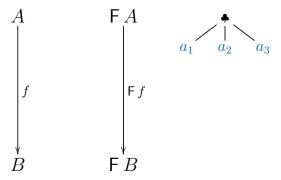
Recall: Examples of Natural Functors

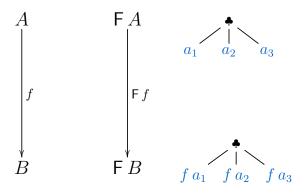
$$FA = \mathbb{N} \times A \qquad \begin{vmatrix} \bullet_0 \\ a \end{vmatrix} \qquad \begin{vmatrix} \bullet_1 \\ a \end{vmatrix} \qquad \begin{vmatrix} \bullet_2 \\ a \end{vmatrix} \qquad \dots$$

$$FA = \mathbb{N} + A \qquad \begin{vmatrix} \bullet_0 \\ a \end{vmatrix} \qquad \bullet_0 \qquad \bullet_1 \qquad \vdots$$

$$FA = \text{List } A \qquad \bullet_0 \qquad \begin{vmatrix} \bullet_1 \\ a \end{vmatrix} \qquad \vdots \qquad \vdots$$





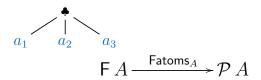


Keep the same shape Apply f to the content

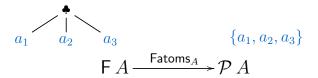
Atoms

 $FA \xrightarrow{\mathsf{Fatoms}_A} \mathcal{P}A$

Atoms



Atoms



Natural Functors

 $F : Set \rightarrow Set$

Functoriality: For all $A \xrightarrow{f} B$, we have $FA \xrightarrow{Ff} FB$ such that:

$$F id_A = id_{FA}$$

 $F (g \circ f) = F g \circ F f$

Naturality: For all A, we have $\mathsf{F}\,A \overset{\mathsf{Fatoms}_A}{\Rightarrow} \mathcal{P}\,A$ such that, for all $A \overset{f}{\rightarrow} B$:

 $\mathsf{image}\ f \circ \mathsf{Fatoms}_A = \mathsf{Fatoms}_B \circ \mathsf{image}\ f$

Examples

$$A \stackrel{f}{\Rightarrow} B \qquad \text{F} A \stackrel{\text{F} f}{\Rightarrow} \text{F} B \qquad \text{F} A \stackrel{\text{Fatoms}}{\Rightarrow} \mathcal{P} A$$

$$\text{F} A = \mathbb{N} \times A \qquad \begin{array}{c} \text{F} f \left(n, a \right) = \left(n, f \, a \right) \\ \text{Fatoms} \left(n, a \right) = \left\{ a \right\} \end{array}$$

$$\text{F} A = \mathbb{N} + A \qquad \begin{array}{c} \text{F} f \left(\text{Left } n \right) = \text{Left } n \\ \text{Fatoms} \left(\text{Left } n \right) = \emptyset \end{array} \qquad \begin{array}{c} \text{F} f \left(\text{Right } a \right) = \text{Right} \left(f \, a \right) \\ \text{Fatoms} \left(\text{Left } n \right) = \emptyset \qquad \text{Fatoms} \left(\text{Right } a \right) = \left\{ a \right\} \end{array}$$

$$\text{F} A = \text{List } A \qquad \begin{array}{c} \text{F} f \left(a_1 \cdot a_2 \cdot \ldots \cdot a_n \right) = f \, a_1 \cdot f \, a_2 \cdot \ldots \cdot f \, a_n \\ \text{Fatoms} \left(a_1 \cdot a_2 \cdot \ldots \cdot a_n \right) = \left\{ a_1, a_2, \ldots, a_n \right\} \end{array}$$

Natural functor $F : Set \rightarrow Set$

Natural functor $F : Set \rightarrow Set$

The shapes of F:

Natural functor $F : Set \rightarrow Set$

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

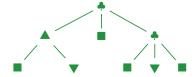
Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

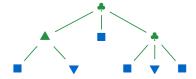
Put them together by plugging in shape for content slot until there are no lingering slots left!



Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

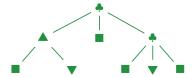


The leaves are always empty-content shapes

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!



Define I_F = the set of all such finitary couplings

Recall: Properties of I_F

Given a natural functor F, $(I_F, \text{ctor} : F \mid_F \rightarrow I_F)$ satisfies:

ctor bijection

$$I_F$$
 = the datatype of F

Iteration (Initial Algebra Property): For all $(A, s : F A \rightarrow A)$, there exists a unique function iter_s such that

$$\begin{array}{c|c} \mathsf{F} \: \mathsf{I}_{\mathsf{F}} & \xrightarrow{\mathsf{F} \: \mathsf{iter}_s} \mathsf{F} \: A \\ \mathsf{ctor} & & s \\ & \mathsf{I}_{\mathsf{F}} & \xrightarrow{\mathsf{iter}} A \end{array}$$

Induction: Given any predicate φ on I_F

$$\frac{\forall x \in \mathsf{F} \mid_{\mathsf{F}}. \ (\forall \mathsf{i} \in \mathsf{Fatoms} \ \mathsf{x}. \ \varphi \mid) \Rightarrow \varphi \ (\mathsf{ctor} \ \mathsf{x})}{\forall i \in \mathsf{I}_{\mathsf{F}}. \ \varphi \mid}$$

Coiterating Shape Composition

Natural functor $F : Set \rightarrow Set$

Natural functor $F : Set \rightarrow Set$

The shapes of F:

Natural functor $F : Set \rightarrow Set$

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Natural functor $F : Set \rightarrow Set$

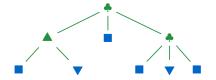
Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

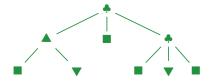


The leaves are always empty-content shapes

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!



The leaves are always empty-content shapes

Natural functor $F : Set \rightarrow Set$

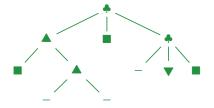
Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!

Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

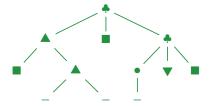
Put them together by plugging in shape for content slot until there are no lingering slots left!



Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

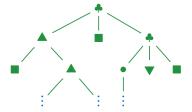
Put them together by plugging in shape for content slot until there are no lingering slots left!



Natural functor $F : Set \rightarrow Set$

Copies of the shapes of F:

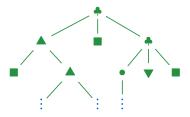
Put them together by plugging in shape for content slot until there are no lingering slots left!



Natural functor $F : Set \rightarrow Set$

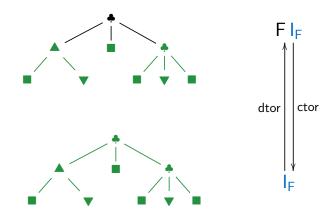
Copies of the shapes of F:

Put them together by plugging in shape for content slot until there are no lingering slots left!



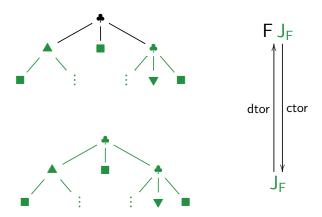
Define J_F = the set of all such (possibly) infinitary couplings

Recall: Properties of I_F: Bijectivity



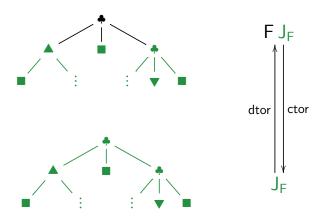
ctor and dtor are mutually inverse bijections

Properties of J_F: Bijectivity



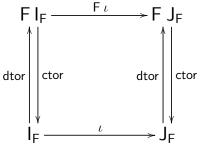
ctor and dtor are mutually inverse bijections

Properties of J_F: Bijectivity

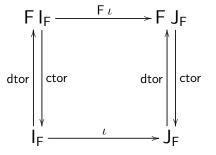


ctor and dtor are mutually inverse bijections A similar property holds for J_F , where we use the same notations for constructor and destructor

I_F is embedded in J_F

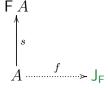


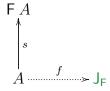
I_F is embedded in J_F

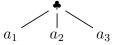


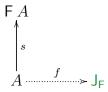
 $\iota = iter_{ctor:F} J_{F} \rightarrow F J_{F}$

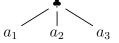
JF

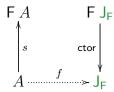


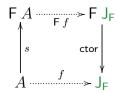


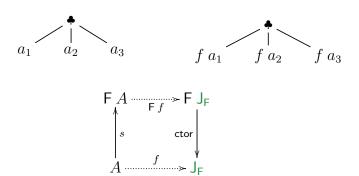


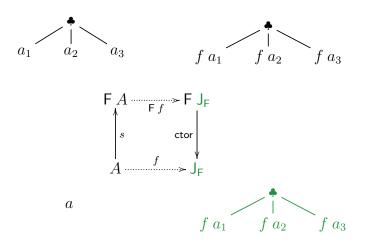


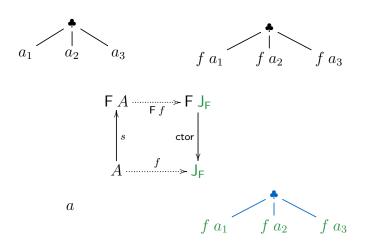




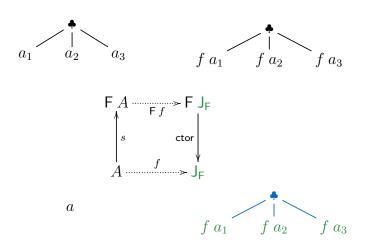




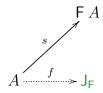


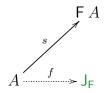


 a_1, a_2, a_3 are not "smaller" than a in any sense

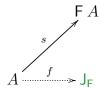


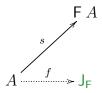
 a_1, a_2, a_3 are not "smaller" than a in any sense But computation has made progress

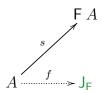


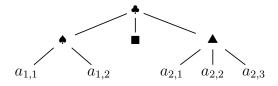


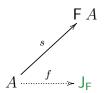
s a

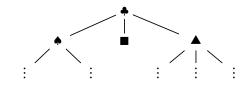


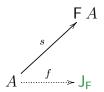




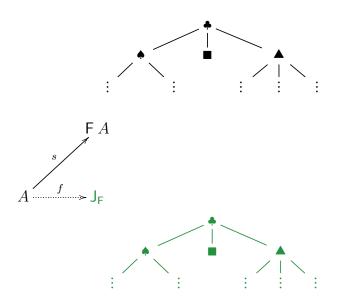




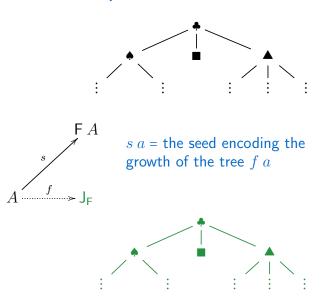




a



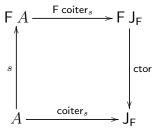
a



a

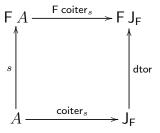
Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$

Coiteration (Final Coalgebra Property): For all $(A, s: A \rightarrow F A)$, there exists a unique function coiter_s with



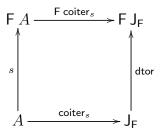
Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$

Coiteration (Final Coalgebra Property): For all $(A, s: A \rightarrow F A)$, there exists a unique function coiter_s with



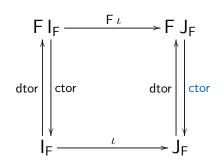
Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$

Coiteration (Final Coalgebra Property): For all $(A, s: A \rightarrow F A)$, there exists a unique function coiter_s with



 $J_{\mathsf{F}} = \mathsf{the}\ \mathsf{codatatype}\ \mathsf{of}\ \mathsf{F}$

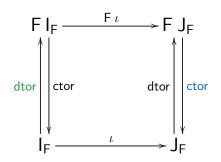
The I_F to J_F embedding revisited



 ι can be regarded as defined by iteration on I_F

 $\iota = iter_{ctor}$

The I_F to J_F embedding revisited



 ι can be regarded as defined by iteration on I_F but also by coiteration on $J_F!$

 $\iota = iter_{ctor} = coiter_{dtor}$

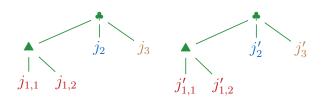
j j'

Want:
$$j = j'$$

Want:
$$j = j'$$

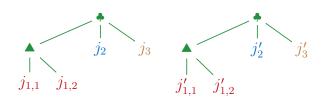
Suffices:
$$j_1 = j'_1$$

 $j_2 = j'_2$
 $j_3 = j'_3$



Suffices:
$$j_1 = j'_1$$

 $j_2 = j'_2$
 $j_3 = j'_3$



Suffices:
$$j_{1,1} = j'_{1,1}, \ j_{1,2} = j'_{1,2}$$

 $j_2 = j'_2$
 $j_3 = j'_3$

Suffices:
$$j_{1,1} = j'_{1,1}, \ j_{1,2} = j'_{1,2}$$

 $j_2 = j'_2$
 $j_3 = j'_3$

If we can stay in the game indefinitely, then equality holds!

Suffices:
$$j_{1,1} = j'_{1,1}, \ j_{1,2} = j'_{1,2}$$

 $j_2 = j'_2$
 $j_3 = j'_3$

If we can stay in the game indefinitely, then equality holds! But how to show we can "stay in the game"?

Suffices:
$$j_{1,1} = j'_{1,1}, \ j_{1,2} = j'_{1,2}$$

 $j_2 = j'_2$
 $j_3 = j'_2$

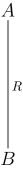
If we can stay in the game indefinitely, then equality holds!

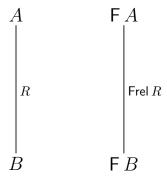
But how to show we can "stay in the game"?

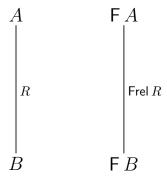
By exhibiting a "strategy"

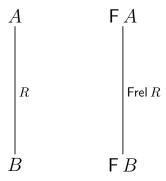
Suffices:
$$j_{1,1} = j'_{1,1}, \ j_{1,2} = j'_{1,2}$$

 $j_2 = j'_2$
 $j_3 = j'_2$

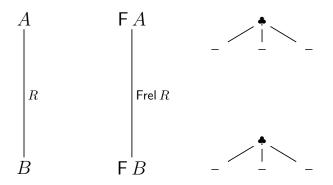




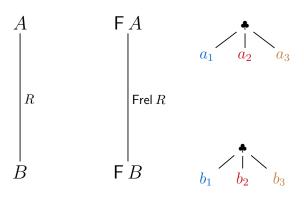




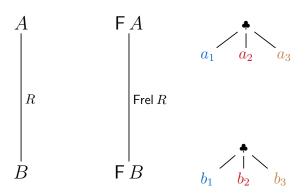
Two elements of F A and F B are related by Frel R iff



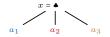
Two elements of F A and F B are related by Frel R iff they have the same shape



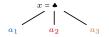
Two elements of F A and F B are related by Frel R iff they have the same shape and the contents from corresponding slots are related by R



Two elements of F A and F B are related by Frel R iff they have the same shape and the contents from corresponding slots are related by R a_1 b_1 , R a_2 b_2 , R a_3 b_3



R relation between A and B, $x \in F$ A, $y \in F$ B



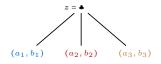
R relation between A and B, $x \in F$ A, $y \in F$ B

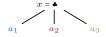
Frel R x y defined as



R relation between A and B, $x \in F$ A, $y \in F$ B

Frel $R \ x \ y$ defined as $\exists z \in F \{(a,b) \mid R \ a \ b\}$. $F \pi_1 \ z = x \land F \pi_2 \ z = y$





R relation between A and B, $x \in F$ A, $y \in F$ B

Frel $R \ x \ y$ defined as $\exists z \in F \{(a,b) \mid R \ a \ b\}$. $F \pi_1 \ z = x \land F \pi_2 \ z = y$

R relation between A and B

$$FA = \mathbb{N} \times A$$
 Frel $R(m, a)(n, b) \Leftrightarrow$

$$FA = \mathbb{N} \times A$$
 Frel $R(m, a)(n, b) \Leftrightarrow (m = n \wedge R \ a \ b)$

$$FA = \mathbb{N} \times A$$
 Frel $R(m, a)(n, b) \Leftrightarrow (m = n \wedge R \ a \ b)$

$$FA = \mathbb{N} + A$$

$$\mathsf{F}\,A = \mathbb{N} \times A \qquad \mathsf{Frel}\,\,R\,\,(m,a)\,\,(n,b) \Longleftrightarrow \,(m=n \,\wedge\, R\,\,a\,\,b)$$

$$\mathsf{Frel}\,\,R\,\,u\,\,v \Longleftrightarrow$$

$$\mathsf{F}\,A = \mathbb{N} + A$$

$$\mathsf{F}\,A = \mathbb{N} \times A \qquad \mathsf{Frel}\,R\;(m,a)\;(n,b) \Leftrightarrow (m=n \,\wedge\, R\;a\;b)$$

$$\mathsf{Frel}\,R\;u\;v \Leftrightarrow \qquad \qquad (\exists n.\;u=v = \mathsf{Left}\;n) \vee \qquad \qquad (\exists a,b.\;u = \mathsf{Right}\;a \,\wedge\, v = \mathsf{Right}\;b \,\wedge\, R\;a\;b)$$

Relators for the Running Examples

R relation between A and BFrel R relation between F A and F B

$$\mathsf{F}\,A = \mathbb{N} \times A \qquad \mathsf{Frel}\,R\;(m,a)\;(n,b) \Leftrightarrow (m=n \,\wedge\, R\; a\; b)$$

$$\mathsf{Frel}\,R\;u\;v \Leftrightarrow \qquad \qquad (\exists n.\; u=v = \mathsf{Left}\;n) \vee \qquad \qquad (\exists a,b.\; u = \mathsf{Right}\;a \,\wedge\, v = \mathsf{Right}\;b \,\wedge\, R\; a\; b)$$

$$\mathsf{F}\,A = \mathsf{List}\,A$$

Relators for the Running Examples

R relation between A and BFrel R relation between F A and F B

$$\begin{aligned} \mathsf{F}\,A &= \mathbb{N} \times A & \mathsf{Frel}\,R\;(m,a)\;(n,b) \Leftrightarrow (m=n \,\wedge\, R\;a\;b) \\ \\ \mathsf{F}\,A &= \mathbb{N} + A & (\exists n.\; u = v = \mathsf{Left}\;n) \vee \\ & (\exists a,b.\; u = \mathsf{Right}\;a \,\wedge\, v = \mathsf{Right}\;b \,\wedge\, R\;a\;b) \end{aligned}$$

$$\mathsf{F}\,A = \mathsf{List}\,A & \mathsf{Frel}\,R\;(a_1 \cdot a_2 \cdot \ldots \cdot a_m)\;(b_1 \cdot b_2 \cdot \ldots \cdot b_n) \Leftrightarrow$$

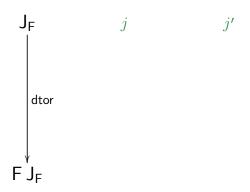
Relators for the Running Examples

R relation between A and BFrel R relation between F A and F B

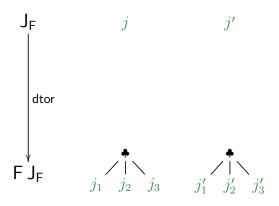
$$\begin{aligned} \mathsf{F}\,A &= \mathbb{N} \times A & \mathsf{Frel}\,R\;(m,a)\;(n,b) \Leftrightarrow (m=n \,\wedge\, R\;a\;b) \\ \\ \mathsf{F}\,A &= \mathbb{N} + A & (\exists n.\; u=v = \mathsf{Left}\;n) \vee \\ & (\exists a,b.\; u = \mathsf{Right}\;a \,\wedge\, v = \mathsf{Right}\;b \,\wedge\, R\;a\;b) \end{aligned}$$

$$\mathsf{F}\,A = \mathsf{List}\,A & \mathsf{Frel}\,R\;(a_1 \cdot a_2 \cdot \ldots \cdot a_m)\;(b_1 \cdot b_2 \cdot \ldots \cdot b_n) \Leftrightarrow \\ & m=n \,\wedge\, (\forall i.\; R\;a_i\;b_i) \end{aligned}$$

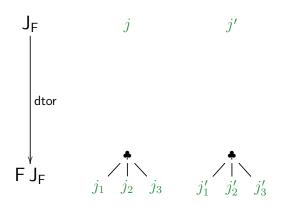
Given binary relation R on J_F



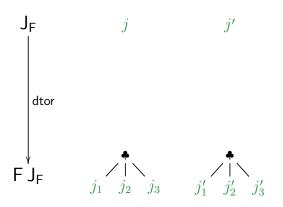
Given binary relation R on J_F If $\forall j, j'$. $R \ j \ j'$



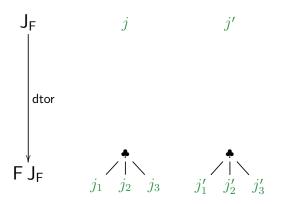
Given binary relation R on J_F If $\forall j, j'$. $R \ j \ j' \Rightarrow Frel R \ (dtor \ j) \ (dtor \ j')$



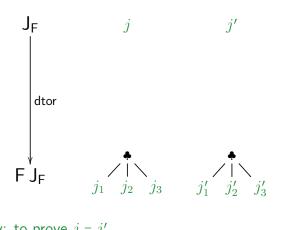
Given binary relation R on J_F If $\forall j, j'$. $R j j' \Rightarrow Frel R (dtor <math>j)$ (dtor j') Then R is included in equality



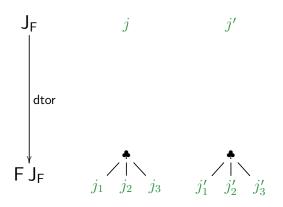
Given binary relation R on J_F If $\forall j, j'. R \ j \ j' \Rightarrow Frel \ R \ (dtor \ j) \ (dtor \ j')$ Then R is included in equality $\forall j, j'. R \ j \ j' \Rightarrow j = j'$



Given binary relation R on J_F If $\forall j, j'. R \ j \ j' \Rightarrow \mathsf{Frel} \ R \ (\mathsf{dtor} \ j) \ (\mathsf{dtor} \ j') \ R \ \mathsf{F-bisimulation}$ Then R is included in equality $\forall j, j'. R \ j \ j' \Rightarrow j = j'$



Summary: to prove j = j', Given binary relation R on J_F If $\forall j, j'$. $R \ j \ j' \Rightarrow Frel \ R \ (dtor \ j) \ (dtor \ j') \ R \ F-bisimulation$ Then R is included in equality $\forall j, j'$. $R \ j \ j' \Rightarrow j = j'$



Summary: to prove j=j', find F-bisimulation R with $R\ j\ j'$ Given binary relation R on J_F If $\forall j,j'$. $R\ j\ j'\Rightarrow {\sf Frel}\ R\ ({\sf dtor}\ j)\ ({\sf dtor}\ j')\ R\ F-{\sf bisimulation}$ Then R is included in equality $\forall j,j'.\ R\ j\ j'\Rightarrow j=j'$

Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$ satisfies:

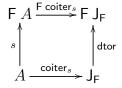
Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$ satisfies:

dtor bijection

Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$ satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all $(A, s : A \rightarrow F A)$, there exists a unique function coiter_s with



Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$ satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all $(A, s : A \rightarrow F A)$, there exists a unique function coiter_s with

$$\begin{array}{c|c}
F & A \xrightarrow{F \text{ coiter}_s} F \downarrow_F \\
\downarrow^s & \uparrow^{\text{dtor}} \\
A \xrightarrow{\text{coiter}_s} \downarrow_F
\end{array}$$

Coinduction: Given any binary relation R on J_F

$$\frac{R \text{ is an F-bisimulation}}{\forall j, j'. \ R \ j \ j' \Rightarrow j = j'}$$

Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$ satisfies:

dtor bijection

Coiteration (Final Coalgebra Property): For all $(A, s: A \rightarrow F A)$, there exists a unique function coiter_s with

$$\begin{array}{c|c}
F & A \xrightarrow{\mathsf{F} \text{ coiter}_s} F \mathsf{J}_{\mathsf{F}} \\
\downarrow s & & & & & \\
\downarrow s & & & & \\
A \xrightarrow{\mathsf{coiter}_s} \mathsf{J}_{\mathsf{F}}
\end{array}$$

Coinduction: Given any binary relation R on J_F

$$\frac{\forall j, j'. \ R \ j \ j' \Rightarrow \operatorname{Frel} R \ (\operatorname{dtor} j) \ (\operatorname{dtor} j')}{\forall j, j'. \ R \ j \ j' \Rightarrow j = j'}$$

Given a natural functor F, $(J_F, dtor : J_F \rightarrow F J_F)$ satisfies:

dtor bijection

$$J_{\mathsf{F}} = \mathsf{the}\;\mathsf{codatatype}\;\mathsf{of}\;\mathsf{F}$$

Coiteration (Final Coalgebra Property): For all $(A, s : A \rightarrow F A)$, there exists a unique function coiter_s with

$$\begin{array}{c|c}
F & A \xrightarrow{\mathsf{F} \text{ coiter}_s} F \mathsf{J}_{\mathsf{F}} \\
\downarrow s & & & \uparrow \\
A \xrightarrow{\mathsf{coiter}_s} \mathsf{J}_{\mathsf{F}}
\end{array}$$

Coinduction: Given any binary relation R on J_F

$$\frac{\forall j, j'. \ R \ j \ j' \Rightarrow \operatorname{Frel} R \ (\operatorname{dtor} j) \ (\operatorname{dtor} j')}{\forall j, j'. \ R \ j \ j' \Rightarrow j = j'}$$

Let B be a fixed set. $FA = B \times A$

Let B be a fixed set. $FA = B \times A$

The shapes of F:

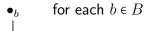
Let *B* be a fixed set. $FA = B \times A$

The shapes of F: $(b, _)$ for each $b \in B$

Let *B* be a fixed set. $FA = B \times A$

The shapes of F: $(b, _)$ for each $b \in B$

Or, graphically:



Let *B* be a fixed set. $FA = B \times A$

The shapes of F: $(b, _)$ for each $b \in B$

Or, graphically:

• $_b$ for each $b \in B$

Who is J_F ?

Let
$$B$$
 be a fixed set. $FA = B \times A$

The shapes of F : $(b, _)$ for each $b \in B$

Or, graphically:

• $_b$ for each $b \in B$

Who is J_F ?

Its elements have the form $(b_1, (b_2, \ldots, (b_n, \ldots$

Let
$$B$$
 be a fixed set. $FA = B \times A$

The shapes of F:
$$(b, _)$$
 for each $b \in B$

Or, graphically:
$$\bullet_b \qquad \text{for each } b \in B$$

Who is J_F ? Its elements have the form $(b_1, (b_2, \ldots, (b_n, \ldots$ I.e., essentially streams $b_1 \cdot b_2 \cdot \ldots \cdot b_n \cdot \ldots$

Let B be a fixed set. $FA = B \times A$

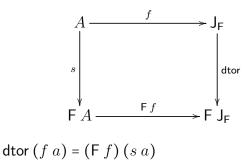
The shapes of F: $(b, _)$ for each $b \in B$

Or, graphically: $\bullet_b \qquad \text{for each } b \in B$

Who is J_F ? Its elements have the form $(b_1, (b_2, \ldots, (b_n, \ldots$ I.e., essentially streams $b_1 \cdot b_2 \cdot \ldots \cdot b_n \cdot \ldots$

So $J_F = Stream_B$

$$B \text{ fixed } FA = B \times A \quad f = \text{coiter}_s \quad J_F = \text{Stream}_B$$



$$B \text{ fixed } FA = B \times A \quad f = \text{coiter}_s \quad J_F = \text{Stream}_B$$

$$A \xrightarrow{f} J_{\mathsf{F}}$$

$$\downarrow s \qquad \qquad \downarrow dtor$$

$$B \times A \xrightarrow{B \times f} B \times J_{\mathsf{F}}$$

$$\mathsf{dtor}(f \ a) = (\mathsf{F} \ f) (s \ a)$$

$$B \text{ fixed} \qquad \mathsf{F} \, A = B \times A \qquad f = \mathsf{coiter}_s \qquad \mathsf{J_F} = \mathsf{Stream_B}$$

$$\mathsf{Define:} \quad \begin{array}{c} \mathsf{hd} = \pi_1 \circ \mathsf{dtor} \quad \mathsf{tl} = \pi_2 \circ \mathsf{dtor} \\ \mathsf{hd}^A = \pi_1 \circ s \qquad \mathsf{tl}^A = \pi_2 \circ s \end{array}$$

$$A \xrightarrow{\qquad \qquad f \qquad \qquad \mathsf{J_F} \qquad \qquad \mathsf{dtor}} \mathsf{J_F}$$

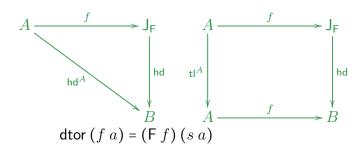
$$\downarrow \mathsf{dtor}$$

$$B \times A \xrightarrow{\qquad \qquad B \times f \qquad \qquad } B \times \mathsf{J_F}$$

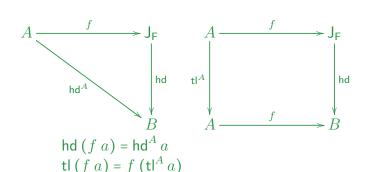
$$\mathsf{dtor} \, (f \, a) = (\mathsf{F} \, f) \, (s \, a)$$

$$B \ \text{fixed} \quad \mathsf{F} \, A = B \times A \quad f = \mathsf{coiter}_s \quad \mathsf{J}_\mathsf{F} = \mathsf{Stream}_\mathsf{B}$$

Define: $\begin{array}{ll} \mathsf{hd} = \pi_1 \circ \mathsf{dtor} & \mathsf{tl} = \pi_2 \circ \mathsf{dtor} \\ \mathsf{hd}^A = \pi_1 \circ s & \mathsf{tl}^A = \pi_2 \circ s \end{array}$

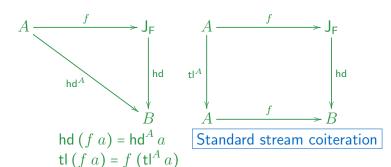


$$B$$
 fixed $FA = B \times A$ $f = \mathrm{coiter}_s$ $J_F = \mathrm{Stream}_B$ Define:
$$\begin{aligned} & \mathsf{hd} = \pi_1 \circ \mathrm{dtor} & \mathsf{tl} = \pi_2 \circ \mathrm{dtor} \\ & \mathsf{hd}^A = \pi_1 \circ s & \mathsf{tl}^A = \pi_2 \circ s \end{aligned}$$

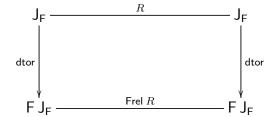


$$B ext{ fixed} ext{ } ext{$$

Define: $\begin{array}{ll} \mathsf{hd} = \pi_1 \circ \mathsf{dtor} & \mathsf{tl} = \pi_2 \circ \mathsf{dtor} \\ \mathsf{hd}^A = \pi_1 \circ s & \mathsf{tl}^A = \pi_2 \circ s \end{array}$

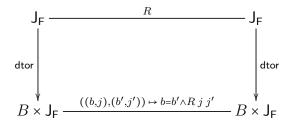


$$B \text{ fixed} \quad F A = B \times A \qquad J_F = \text{Stream}_B$$



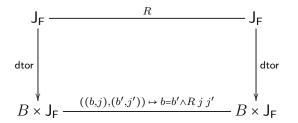
$$\frac{R \text{ is an F-bisimulation}}{\forall j, j'. R j j' \Rightarrow j = j'}$$

$$B \text{ fixed} \quad F A = B \times A \qquad J_F = \text{Stream}_B$$



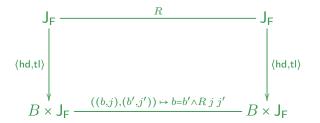
$$\frac{R \text{ is an F-bisimulation}}{\forall j, j'. R j j' \Rightarrow j = j'}$$

$$B$$
 fixed F $A = B \times A$ $J_F = Stream_B$
hd = $\pi_1 \circ dtor$ tl = $\pi_2 \circ dtor$



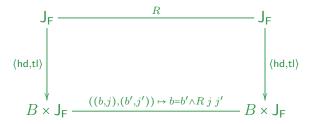
$$\frac{R \text{ is an F-bisimulation}}{\forall j, j'. R j j' \Rightarrow j = j'}$$

$$B$$
 fixed F A = $B \times A$ J_F = Stream_B hd = $\pi_1 \circ$ dtor tl = $\pi_2 \circ$ dtor



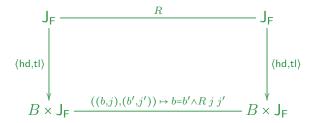
$$\frac{R \text{ is an F-bisimulation}}{\forall j, j'. R j j' \Rightarrow j = j'}$$

$$B ext{ fixed} ext{ } extsf{F} A = B imes A ext{ } extsf{J}_{ extsf{F}} = extsf{Stream}_{ ext{B}}$$
 $ext{hd} = \pi_1 \circ ext{dtor} ext{ } ext{tl} = \pi_2 \circ ext{dtor}$



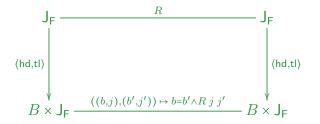
$$\frac{\forall j, j'. \ R \ j \ j' \Rightarrow \mathsf{Frel} \ R \ (\mathsf{dtor} \ j) \ (\mathsf{dtor} \ j')}{\forall j, j'. \ R \ j \ j' \Rightarrow j = j'}$$

$$B ext{ fixed} ext{ } extsf{F} A = B imes A ext{ } extsf{J}_{ extsf{F}} = ext{Stream}_{ ext{B}}$$
 $ext{hd} = \pi_1 \circ ext{dtor} ext{ } ext{tl} = \pi_2 \circ ext{dtor}$



$$\frac{\forall j, j'. \ R \ j \ j' \Rightarrow \mathsf{Frel} \ R \ (\mathsf{hd} \ j, \mathsf{tl} \ j) \ (\mathsf{hd} \ j', \mathsf{tl} \ j')}{\forall j, j'. \ R \ j \ j' \Rightarrow j = j'}$$

$$B ext{ fixed} ext{ } extsf{F} A = B imes A ext{ } extsf{J}_{ extsf{F}} = ext{Stream}_{ ext{B}}$$
 $ext{hd} = \pi_1 \circ ext{dtor} ext{ } ext{tl} = \pi_2 \circ ext{dtor}$



$$\frac{\forall j, j'. \ R \ j \ j' \Rightarrow \mathsf{hd} \ j = \mathsf{hd} \ j' \ \land \ R \ (\mathsf{tl} \ j) \ (\mathsf{tl} \ j')}{\forall j, j'. \ R \ j \ j' \Rightarrow j = j'}$$

Concrete Example of Coiteration

```
ev : Stream_B \rightarrow Stream_B

hd (ev j) = hd j

tl (ev j) = ev (tl (tl j))
```

Concrete Example of Coiteration

```
ev: Stream_B \rightarrow Stream_B

hd (ev j) = hd j

tl (ev j) = ev (tl (tl j))

odd: Stream_B \rightarrow Stream_B

hd (odd j) = hd (tl j)

tl (odd j) = odd (tl (tl j))
```

Concrete Example of Coiteration

```
ev : Stream_B \rightarrow Stream_B
    hd (ev j) = hd j
    \mathsf{tl}(\mathsf{ev}\ i) = \mathsf{ev}(\mathsf{tl}(\mathsf{tl}\ i))
odd : Stream<sub>B</sub> \rightarrow Stream<sub>B</sub>
    hd (odd j) = hd (tl j)
    tl (odd j) = odd (tl (tl j))
zip : Stream_B \times Stream_B \rightarrow Stream_B
    hd (zip (j_1, j_2)) = hd j_1
    tl(zip(j_1, j_2)) = zip(j_2, tl j_1)
```

zip (ev j, odd j) = j

```
zip (ev j, odd j) = j
```

$$\mathsf{tl}\left(\mathsf{zip}\left(\mathsf{ev}\;j,\mathsf{odd}\;j\right)\right)=\mathsf{tl}\;j$$

 $\mathsf{hd}\,(\mathsf{zip}\,(\mathsf{ev}\,j,\mathsf{odd}\,j)) = \mathsf{hd}\,j$

```
zip (ev j, odd j) = j
```

$$tl(zip(ev j, odd j)) = tl j$$

hd (zip (ev j, odd j)) = hd j

```
zip (ev j, odd j) = j
```

$$zip (odd j, tl (ev j)) = tl j$$

$$\mathsf{hd}\,(\mathsf{zip}\,(\mathsf{ev}\,j,\mathsf{odd}\,j)) = \mathsf{hd}\,j$$

hd(zip(ev j, odd j)) = hd j

```
zip(ev j, odd j) = j
```

$$zip (odd j, ev (tl (tl j))) = tl j$$

 $hd \dots = hd (tl j)$

tl(zip(odd j, ev(tl(tl j))) = tl(tl j)

```
\mathsf{zip}\,(\mathsf{ev}\;j,\mathsf{odd}\;j)=j
```

$$zip (odd j, ev (tl (tl j))) = tl j$$
 $hd (zip (ev j, odd j)) = hd j$

zip(ev(t|(t|j)), odd(t|(t|j))) = t|(t|j) hd ... = hd(t|j)

```
zip(ev j, odd j) = j
```

$$zip (odd j, ev (tl (tl j))) = tl j$$

 $\operatorname{hd}\left(\operatorname{zip}\left(\operatorname{ev}\,j,\operatorname{odd}\,j\right)\right)=\operatorname{hd}\,j$

$$zip(ev(tl(tlj)), odd(tl(tlj))) = tl(tlj) hd ... = hd(tlj)$$

```
zip (odd j, ev (tl (tl j))) = tl j hd (zip (ev j, odd j)) = hd j
```

```
Bisimulation: R j_1 j_2 \equiv j_1 = \operatorname{zip} (\operatorname{ev} j_2, \operatorname{odd} j_2) \vee \exists j. j_1 = \operatorname{zip} (\operatorname{odd} j, \operatorname{ev} (\operatorname{tl} (\operatorname{tl} j))) \wedge j_2 = \operatorname{tl} j
```

zip(ev(t|(t|j)), odd(t|(t|j))) = t|(t|j) hd ... = hd(t|j)

zip (ev j, odd j) = j

Natural functors are a class of functors

Natural functors are a class of functors containing the standard basic functors: sum, product, etc.

Natural functors are a class of functors containing the standard basic functors: sum, product, etc. closed under the datatype and codatatype constructor

Natural functors are a class of functors containing the standard basic functors: sum, product, etc. closed under the datatype and codatatype constructor

E.g.: fixing B, List_B is the datatype of $A \mapsto \{*\} + B \times A$

Natural functors are a class of functors containing the standard basic functors: sum, product, etc. closed under the datatype and codatatype constructor

E.g.: fixing B, List_B is the datatype of $A \mapsto \{*\} + B \times A$ but $B \mapsto \text{List}_B$ is also a natural functor

Natural functors are a class of functors containing the standard basic functors: sum, product, etc. closed under the datatype and codatatype constructor

E.g.: fixing B, List_B is the datatype of $A \mapsto \{*\} + B \times A$ but $B \mapsto \text{List}_B$ is also a natural functor and similarly for $B \mapsto \text{Stream}_B$

Natural functors are a class of functors containing the standard basic functors: sum, product, etc. closed under the datatype and codatatype constructor

E.g.: fixing B, List_B is the datatype of $A \mapsto \{*\} + B \times A$ but $B \mapsto \text{List}_B$ is also a natural functor and similarly for $B \mapsto \text{Stream}_B$

Nesting datatypes in codatatypes or vice versa allows for modular specs of fancy data structures

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

User can write high-level specifications:

codatatype Stream A = Cons(hd : A)(tl : List A)

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

User can write high-level specifications:

```
codatatype Stream A = Cons(hd : A)(tl : List A)
```

In the background:

- Isabelle parses this into a natural functor: $B \mapsto B \times A$
- Then infers high-level principles for (co)recursion and (co)induction for Stream
- Finally, Stream is itself registered as a natural functor

datatype List $A = Nil \mid Cons A (List A)$

datatype List $A = Nil \mid Cons A (List A)$

codatatype Lazy_List $A = Nil \mid Cons A (List A)$

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A) codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A) datatype X \mid A = \operatorname{Leaf} A \mid \operatorname{Node} (X \mid A) \ (X \mid A)
```

```
datatype List A = \text{Nil} \mid \text{Cons } A \text{ (List } A)
\text{codatatype Lazy\_List } A = \text{Nil} \mid \text{Cons } A \text{ (List } A)
\text{datatype BTree } A = \text{Leaf } A \mid \text{Node } (X A) \text{ } (X A)
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A) codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A) datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} (X A) \ (X A) datatype X A = \operatorname{Node} A \ (\operatorname{List} (X A))
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A) codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A) datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} (X A) \ (X A) datatype Tree A = \operatorname{Node} A \ (\operatorname{List} \ (\operatorname{Tree} A))
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} (X A) \ (X A)

datatype Tree A = \operatorname{Node} A \ (\operatorname{List} \ (\operatorname{Tree} A))

finite-depths, finitely branching

A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} \ (X A) \ (X A)

datatype Tree A = \operatorname{Node} A \ (\operatorname{List} \ (\operatorname{Tree} A))

finite-depths, infinitely branching

A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} (X A) \ (X A)

datatype Tree A = \operatorname{Node} A \ (\operatorname{Lazy\_List} \ (\operatorname{Tree} A))

finite-depths, infinitely branching A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} (X A) \ (X A)

datatype Tree A = \operatorname{Node} A \ (\operatorname{Lazy\_List} \ (\operatorname{Tree} A))

infinite-depths, infinitely branching A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} \ (X A) \ (X A)

codatatype Tree A = \operatorname{Node} A \ (\operatorname{Lazy\_List} \ (\operatorname{Tree} A))

infinite-depths, infinitely branching A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} (X A) \ (X A)

codatatype Tree A = \operatorname{Node} A \ (\operatorname{Lazy\_List} \ (\operatorname{Tree} A))

infinite-depths, infinitely branching unordered A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} \ (X A) \ (X A)

codatatype Tree A = \operatorname{Node} A \ (\operatorname{Countable\_Set} \ (\operatorname{Tree} A))

infinite-depths, infinitely branching unordered A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} \ (X A) \ (X A)

codatatype Tree A = \operatorname{Node} A \ (\operatorname{Set}_k \ (\operatorname{Tree} A))

infinite-depths, infinitely branching unordered A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} (X A) \ (X A)

codatatype Tree A = \operatorname{Node} A \ (\operatorname{Multi_Set} \ (\operatorname{Tree} A))

infinite-depths, infinitely branching unordered A-labeled trees
```

```
datatype List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

codatatype Lazy_List A = \operatorname{Nil} \mid \operatorname{Cons} A \ (\operatorname{List} A)

datatype BTree A = \operatorname{Leaf} A \mid \operatorname{Node} \ (X A) \ (X A)

codatatype Tree A = \operatorname{Node} A \ (\operatorname{Fuzzy\_Set} \ (\operatorname{Tree} A))

infinite-depths, infinitely branching unordered A-labeled trees
```

```
datatype List A = \text{Nil} \mid \text{Cons } A \text{ (List } A)

codatatype Lazy_List A = \text{Nil} \mid \text{Cons } A \text{ (List } A)

datatype BTree A = \text{Leaf } A \mid \text{Node } (X A) (X A)

codatatype Tree A = \text{Node } A \text{ (PLUG_YOUR_OWN (Tree } A))}

infinite-depths, infinitely branching unordered A-labeled trees
```

```
datatype List A = \text{Nil} \mid \text{Cons } A \text{ (List } A)

codatatype Lazy_List A = \text{Nil} \mid \text{Cons } A \text{ (List } A)

datatype BTree A = \text{Leaf } A \mid \text{Node } (X A) (X A)

codatatype Tree A = \text{Node } A \text{ (PLUG_YOUR_OWN (Tree } A))}

infinite-depths, infinitely branching unordered A-labeled trees
```

- Show a set operator to be a (bounded) natural functor
- Register it
- Then Isabelle will allow nesting it in (co)datatype expressions

```
datatype X A =
Elements (Finite_Set (X A))
```

```
datatype Hereditarily_Finite_Set A =
    Elements (Finite_Set (Hereditarily_Finite_Set A))
```

```
\label{eq:datatype} \begin{array}{ll} \mathsf{datatype} \ \mathsf{Hereditarily\_Finite\_Set} \ A = \\ & \mathsf{Elements} \ (\mathsf{Finite\_Set} \ (\mathsf{Hereditarily\_Finite\_Set} \ A)) \end{array}
```

... in the presence of the Foundation Axiom

... in the presence of Aczel's Anti-Foundation Axiom

Datatypes and codatatypes have intuitive representations in terms of Shape and Content

Datatypes and codatatypes have intuitive representations in terms of Shape and Content

They form a rich, extendable universe

Datatypes and codatatypes have intuitive representations in terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it available to the users

Datatypes and codatatypes have intuitive representations in terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it available to the users with a lot of sugar to hide the category theory ©

Datatypes and codatatypes have intuitive representations in terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it available to the users with a lot of sugar to hide the category theory ©

But... the category theory in the background offers flexibility unprecedented in proof assistants or programming languages

Datatypes and codatatypes have intuitive representations in terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it available to the users with a lot of sugar to hide the category theory ©

But... the category theory in the background offers flexibility unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete intuitions

Datatypes and codatatypes have intuitive representations in terms of Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it available to the users with a lot of sugar to hide the category theory ©

But... the category theory in the background offers flexibility unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete intuitions

The abstract reality can be very concrete

Relevant Literature

