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Shapes filled with content from a set A = {ay, as, ...}
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Recall: Natural Functors on Set

F:Set — Set is a natural functor if:
It comes with a set of shapes, say
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Each element 2 € F A consists of:

a choice of a shape, say s
/ I\
a; a2 as

a filling with content from A, say
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Recall: Examples of Natural Functors

o o (D)
FA=NxA ‘ ‘
a a a
°
FA=N+A ‘ LTy} LB
a
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FA=List A © | BN ‘\\

a al as aq a9 as
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Functorial Action (Mapper)

A FA s
N
aq a9 as
f Fr
PARN
B FB far fay fas

Keep the same shape
Apply f to the content
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Atoms

&
PN
aq a9 as {ah a2, a3}
FA Fatoms 4 PA




Natural Functors
F:Set — Set

Functoriality: For all A i B, we have F A in FB
such that:

Fidg = ideg
F(gof)=FgoFf

Fatoms 4

Naturality: For all A, we have FA =" "P A such
that, for all A i B:

image f o Fatoms, = Fatomsp o image f



Examples

AL B FALER FAPR™SDp 4

_ Ff(n,a)=(n,fa)
FA=NxA ioms (n,a) ={a}

FA_naa Ff(Leftn)=Leftn Ff (Righta)=Right (f o)
- Fatoms (Leftn) =@  Fatoms (Righta) = {a}

FA-=List A Ff(ai-as-...can)=fai-fas...  fa,

Fatoms (ai-as-...-a,) ={ay,as,...,a,}
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Recall: Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: ] v A ry

7N\ AN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Y
A/L\'ﬁ
/ \ YARN

= v

H v 1

Define Ir = the set of all such finitary couplings



Recall: Properties of I¢

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:

ctor bijection IlF = the datatype of F

Iteration (Initial Algebra Property): For all (A,s:F A — A),
there exists a unique function iter, such that

F iters

FlF—>FA

I A

iterg

Induction: Given any predicate ¢ on Ig

Vo eF lg. (Vie Fatoms x. ¢ i) = ¢ (ctor x)

VZEIFQOI
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Natural functor F : Set — Set

Copies of the shapesof F: m w o A »
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Coiterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: B Vv o A &

LN /I

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Define Jr = the set of all such (possibly) infinitary couplings



Recall: Properties of Ig: Bijectivity
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Properties of Jr: Bijectivity

&
A [ | L

VNN
[ | : v 1
dtor | |ctor
ry
A/|\
[ | &
/N AN Jr
[ | : v 1

ctor and dtor are mutually inverse bijections
A similar property holds for Jg, where we use the
same notations for constructor and destructor



lr is embedded in Jg
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lr is embedded in Jg

Fle F L F

dtor | | ctor dtor | | ctor

IF : Jr

L= iterc’cor:F Jr=F JF



FA

Properties of Jg: Coiteration
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Fy
PN
ay ag as
FA F Jr
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Properties of Jg: Coiteration

r'y
I
a1 a2 as
FA........F....].C.“.)FJF
s ctor|
A .
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Properties of Jg: Coiteration

Fy
I I
ay a9 as f ay f . f as
F A F g
s ctor|
A .
&
“ T

Jaq [ az I as

ai, as, az are not “smaller” than a in any sense
But computation has made progress
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Properties of Jg: Coiteration
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Properties of Jg: Coiteration
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Properties of Jg: Coiteration
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Properties of Jg: Coiteration

&
P
') [ ] A
SN SN

FA
s a = the seed encoding the
y growth of the tree f a
f

A i > e
ry
T
') [ ] A
SN SN



Properties of Jg: Coiteration
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Given a natural functor F, (Jg, dtor: Jg — F Jg)

Coiteration (Final Coalgebra Property): For all
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Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg — F Jg)

Coiteration (Final Coalgebra Property): For all
(A,s: A—F A), there exists a unique function coiter, with

F coiter
FA———=F J§
s dtor
coiterg
Jr

JF = the codatatype of F




The | to Jr embedding revisited

Fle

dtor

ctor

dtor

¢ can be regarded as defined by

iteration on Ig

l/ = Ite rctor

F Je

ctor



The | to Jr embedding revisited

Fle il F Jr

dtor | | ctor dtor| |[ctor

IF : Jr

¢ can be regarded as defined by
iteration on Ig but also by coiteration on Jg!

L = Itercior = COItergior
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Properties of Jr: Coinduction

& &
A J2 J3 A 74 74
IS I\

Ji1 o J12 Ji1 J1s

SUfﬁceS: le = jil, j1~,2 = j{a
=
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Properties of Jr: Coinduction

N N

Suffices:  ji1=Ji,, Ji2=Jl>
i
J3 = J3
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Properties of Jr: Coinduction

N N

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?
By exhibiting a “strategy”

Suffices:  Ji1 =171, J12=1J1,
i
J3 =173
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But First: Relators
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But First: Relators

A FA 7y
N
a1 a2 as
R Frel R
/ T AN
B FB b1 by b3

Two elements of F A and F B are related by Frel R iff
they have the same shape

and the contents from corresponding slots are related by R
R aq bl, R a9 bg, R as Z);g
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Relator Defined from Mapper

SN

(a1,b1) (az,b2) (a3, b3)

R relation between A and B, zeF A, yeF B

Frel R x y defined as
JzeF{(a,b)|Rab}.Fmiz=0AFmyz=y
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Frel R relation between F A and F B

FA=NxA Frel R(m,a)(n,b) <= (m=nn Rab)

Frel Ruv <
FA=N+A (In. u=wv=Leftn)v
(Ja,b. u=Righta A v=Rightb A Rab)
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Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA Frel R(m,a)(n,b) <= (m=nn Rab)

Frel Ruv <
FA=N+A (In. u=wv=Leftn)v
(Ja,b. u=Righta A v=Rightb A Rab)

Frel R (ay-as-...-a,) (by-by-...-b,) <

FA=List A m=n A (Vi. Ra; b;)
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Back to the “Strategy” for Proving Equality

JF J J'
dtor
&» &
F e VRN VRN

JvoJ2 Js g1 Ja U3

Summary: to prove j = j’,
Given binary relation R on Jg
If Vj,j'. Rjj" = Frel R (dtor j) (dtOI’J ’B’ F-bisimulation
Then R is included in equality Vj,5'. Rjj ' =j=7"




Back to the “Strategy” for Proving Equality

JF J J'
dtor
&» &
F e VRN VRN

JvoJ2 Js g1 Ja U3

Summary: to prove j = j’, find F-bisimulation R with R j j’
Given binary relation R on Jg
If Vj,j. R j j’ = Frel R (dtor j) (dtor j') | R F-bisimulation |
Then R is included in equality Vj,5'. Rjj ' =j=7"
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Summary for Jg

Given a natural functor F, (Jg, dtor: Jg — F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s: A—>F A), there exists a unique function coiter, with

F A F coiterg F JF

coiter,
A——J¢

Coinduction: Given any binary relation R on Jg

R is an F-bisimulation
Vi, i Rjj =j=7




Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all
(A, s: A—>F A), there exists a unique function coiter, with

FAZCOME

s dtor

) _coiters I
Coinduction: Given any binary relation R on Jg

Vj,7'. Rj j" = Frel R (dtor j) (dtor j")
Vi, jRjj=7j=J'




Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:

dtor bijection JF = the codatatype of F

Coiteration (Final Coalgebra Property): For all
(A, s: A—>F A), there exists a unique function coiter, with

FAZCOME

s dtor

) _coiters I
Coinduction: Given any binary relation R on Jg

Vj,7'. Rj j" = Frel R (dtor j) (dtor j")
Vi, jRjj=7j=J'
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Example of Codatatype

Let Bbeafixedset. FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: ., foreach be B
Who is Jg7?
Its elements have the form (b, (bo, ..., (b, ...
l.e., essentially streams by by ... b, ...

So Jg = Streamg
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Bfixed FA=BxA f=coitery Jg=Streamg

s dtor

BXA Bxf

dtor (f a) = (F f) (s a)

BXJF
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Example of Codatatype: Stream

B fixed FA=BxA f=coitergs Jg=Streamg

hd = m; odtor tl = w9 o dtor

Define: hd? = T 08 t14 = M9 0 8
A ! Jr
(hd t14) (hd,tl)
BxA et BxJe

dtor (f a) = (F f) (s )



Example of Codatatype: Stream

Bfixed FA=BxA f=coitery Jg=Streamg

hd = m; odtor tl = w5 o dtor

Define: hdd=mos tih=mos
A ! Je A : IF
» hd ¢4 hd
B A : b
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B fixed FA=BxA f=coitery Jg=Streamg

hd = m; odtor tl = 7y o dtor

Define: hd =705 t'=mos
A f Jp A - I
» hd o4 hd
/

hd (fa)=hd*a [Standard stream coiteration

th(fa)=f(t"a)
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Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = m; odtor tl = w5 o dtor

Jr & Jr

(hd,tl) (hd,tl)

((b,5),(b',5")) = b=b'AR j j'

BXJF BXJF

Vj,§' Rjj =hdj=hdj' A R(tlj) (tl ')
Vi Rjj ==
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Concrete Example of Coiteration

ev : Streamp — Streamp
hd (ev j) =hd j
tl (evj) =ev (tl (tlj))

odd : Streampg — Streamp
hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl 5))

zip : Streamp x Streamp — Streamp
hd (zip (j1,j2)) = hd j1
tl (zip (J1, J2)) = zip (J2, tl j1)
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Pattern-Based Incremental Coinduction

zip (ev j,0dd j) =
zip (odd j, ev (tl (tl 7))) =tl j hd (zip (ev j,odd j)) = hd j

zip (ev (tl (tl 7)), odd (tl (tl j))) =tl(tl j) hd ...=hd (tlj)



Pattern-Based Incremental Coinduction

zip (ev j, odd j) = j

zip (odd j, ev (tl (tl 7))) =tl j hd (zip (ev j,odd j)) = hd j

zip (ev (tl (tl 7)), odd (tl (tl j))) =tl(tl j) hd ...=hd (tlj)
Bisimulation: R 71 jo =

J1 = zip (ev ja, 0dd js) Vv
5. j1 =zip (odd j, ev (tl (tj))) A j2=tlj
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Universe of (Co)Datatypes

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A~ {*} + Bx A
but B ~ Listg is also a natural functor
and similarly for B — Streamp

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures
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Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors
User can write high-level specifications:

codatatype Stream A = Cons (hd : A) (tl: List A)

In the background:

e |sabelle parses this into a natural functor: B+ B x A

e Then infers high-level principles for (co)recursion and
(co)induction for Stream

e Finally, Stream is itself registered as a natural functor
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Examples

datatype List A = Nil | Cons A (List A)
codatatype Lazy_List A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (X A) (X A)

codatatype Tree A = Node A (PLUG_-YOUR_OWN (Tree A))
infinite-depths, infinitely branching unordered
A-labeled trees

e Show a set operator to be a (bounded) natural functor
e Register it

e Then Isabelle will allow nesting it in (co)datatype
expressions
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Examples

codatatype Hereditarily_Finite_Set A =
Elements (Finite_Set (Hereditarily_Finite_Set A))

. in the presence of Aczel's Anti-Foundation Axiom
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Summary

Datatypes and codatatypes have intuitive representations in
terms of Shape and Content

They form a rich, extendable universe
The proof assistant Isabelle/HOL represents this universe and
makes it available to the users with a lot of sugar to hide the

category theory ©

But... the category theory in the background offers flexibility
unprecedented in proof assistants or programming languages

Moreover, the abstract constructions have very concrete
intuitions

The abstract reality can be very concrete
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