Bindings as Bounded Natural Functors

Jasmin Blanchette, Lorenzo Gheri, Andrei Popescu, Dmitriy Traytel

Vrije Universiteit Amsterdam

Middlesex University London

ETH Zürich

Bindings as Bounded Natural Functors

Jasmin Blanchette, Lorenzo Gheri, Andrei Popescu, Dmitriy Traytel

Vrije Universiteit Amsterdam

Middlesex University London

ETH Zürich

https://www.youtube.com/watch?v=gkq20NqQ2MI

Modular framework for datatypes with bindings

- Complex variable binders
- Infinitary syntax too (including coinductive datatypes)

Formalized in the Isabelle/HOL proof assistant

It is being implemented as a definitional package

Several very expressive syntactic formats:

 $C\alpha$ MI [Pottier 2006] Ott [Sewell et al. 2010] Unbound [Weirich et al. 2011] Isabelle Nominal2 [Urban and Kaliszyk 2012] Needle&Knot [Keuchel et al. 2016]

Binder = Mechanism for combining any variables with any terms.

$$\lambda v.t$$

let $v = t_1$ in t_2

let rec $v_1 = t_1$ and ... and $v_k = t_k$ in t

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets $F : \text{Set}^m \times \text{Set}^n \to \text{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Think: $F(V_1, \ldots, V_m, T_1, \ldots, T_n)$ combines variables $v_i \in V_i$ and terms $t_j \in T_j$ such that $v_i \in V_i$ binds in $t_j \in T_j$ if $(i, j) \in \theta$.

 $\lambda v.t$

let $v = t_1$ in t_2

let rec $v_1 = t_1$ and ... and $v_k = t_k$ in t

let rec $v_1 =$

Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets $F : \text{Set}^m \times \text{Set}^n \to \text{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

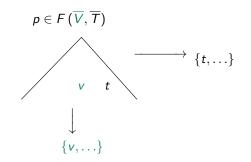
Think: $F(V_1, \ldots, V_m, T_1, \ldots, T_n)$ combines variables $v_i \in V_i$ and terms $t_j \in T_j$ such that $v_i \in V_i$ binds in $t_j \in T_j$ if $(i, j) \in \theta$.

$\lambda v.t$	$egin{aligned} m&=n=1\ {\sf F}\left(V,T ight)&=V imes T\ heta&=\{(1,1)\} \end{aligned}$
let $v = t_1$ in t_2	$m = 1, n = 2 F(V, T_1, T_2) = V \times T_1 \times T_2 \theta = \{(1, 2)\}$
t_1 and and $v_k = t_k$ in t	m = n = 1 F (V, T) = List (V × T) × T $\theta = \{(1, 1)\}$

Proposal: Binder = Operator on sets $F : \text{Set}^m \times \text{Set}^n \to \text{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

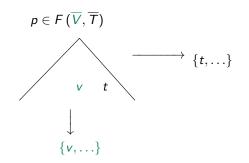
Proposal: Binder = Operator on sets $F : \text{Set}^m \times \text{Set}^n \to \text{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

F "Natural" (Container-like)



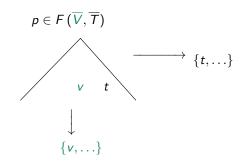
Proposal: Binder = Operator on sets $F : \text{Set}^m \times \text{Set}^n \to \text{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$. Finitary?

F "Natural" (Container-like)



Proposal: Binder = Operator on sets $F : Set^m \times Set^n \rightarrow Set$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$. Bounded

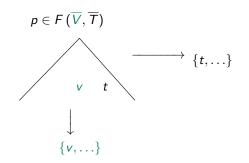
F "Natural" (Container-like)



Proposal: Binder = Operator on sets $F : \operatorname{Set}^m \times \operatorname{Set}^n \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

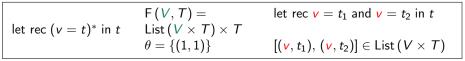
Bounded

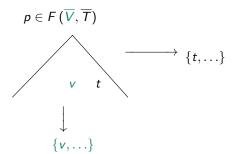
F "Natural" (Container-like) Functor?



Proposal: Binder = Operator on sets $F : Set^m \times Set^n \rightarrow Set$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$. Bounded

F "Natural" (Container-like) Functor?

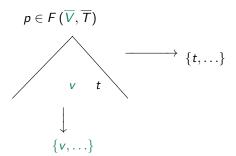




Proposal: Binder = Operator on sets $F : Set^m \times Set^n \rightarrow Set$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$. Bounded

F "Natural" (Container-like) Functor?

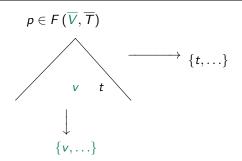




Proposal: Binder = Operator on sets $F : Set^m \times Set^n \rightarrow Set$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$. Bounded

F "Natural" (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

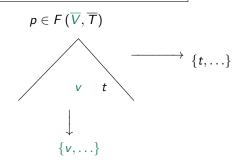


Proposal: Binder = Operator on sets $F : Set^m \times Set^n \rightarrow Set$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$. Bounded

F "Natural" (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

w (v). p



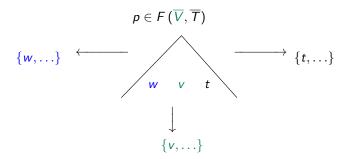
Proposal: Binder = Operator on sets $F : \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Bounded

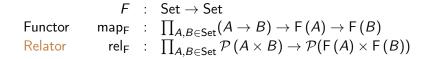
F "Natural" (Container-like)

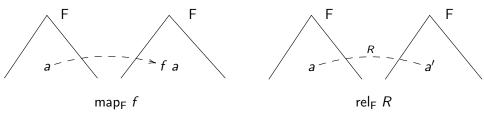
Functor on (binding) variable arguments only w.r.t. injections

p = m = n = 1 $F(W, V, T) = W \times V \times T$ $\theta = \{(1, 1)\}$



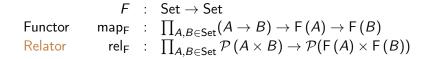
More About Container-Like Functors

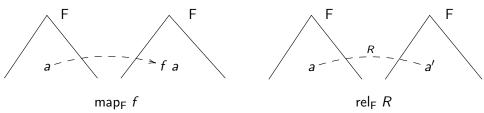




Container types [Hoogendijk and de Moor 2000] Containers [Abbott et al. 2005] Bounded Natural Functors (BNFs) [Traytel et al. 2012]

More About Container-Like Functors





Container types [Hoogendijk and de Moor 2000] Containers [Abbott et al. 2005] Bounded Natural Functors (BNFs) [Traytel et al. 2012]

Structure of Binders (Summary)

Proposal: Binder = Operator on sets $F : \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \to \operatorname{Set}$ that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. arbitrary functions on the *p* free-variable arguments w.r.t. injections on the *m* binding-variable arguments w.r.t. arbitrary functions on the *n* "term" arguments plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets $F : Set^{p} \times Set^{m} \times Set^{n} \rightarrow Set$ that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. small-support endofunctions on the *p* free-variable arguments w.r.t. small-support endobijections on the *m* binding-vars. arguments w.r.t. arbitrary functions on the *n* "term" arguments plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets $F : Set^{p} \times Set^{m} \times Set^{n} \rightarrow Set$ that is a Map-Restricted Bounded Natural Functor (MRBNF):

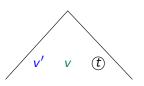
w.r.t. small-support endofunctions on the *p* free-variable arguments w.r.t. small-support endobijections on the *m* binding-vars. arguments w.r.t. arbitrary functions on the *n* "term" arguments plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Term-agnostic: Binds any hypothetical terms.

 $F: \operatorname{Set}^p \times \operatorname{Set}^m \times \operatorname{Set} \to \operatorname{Set}$

Assume p = m.

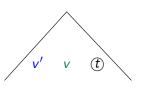
$$\mathsf{T}(\overline{V}) = \mu \overline{A}. \mathsf{F}(\overline{V}, \overline{V}, \overline{A})$$



 $F: \operatorname{Set}^p \times \operatorname{Set}^m \times \operatorname{Set} \to \operatorname{Set}$

Assume p = m.

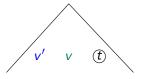
Raw terms: $\overline{T(\overline{V})} = \mu \overline{A}. F(\overline{V}, \overline{V}, \overline{A})$



 $F: \operatorname{Set}^p \times \operatorname{Set}^m \times \operatorname{Set} \to \operatorname{Set}$

Assume p = m.

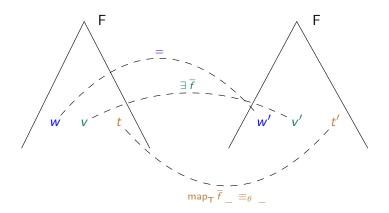
Raw terms: $\overline{\mathsf{T}(\overline{V})} = \mu \overline{A}. \mathsf{F}(\overline{V}, \overline{V}, \overline{A})$



Alpha-quotiented terms:

$$\overline{\mathsf{T}(\overline{V})} = \overline{\mathsf{T}(\overline{V})} / \equiv_{\theta}$$

Inductive Definition of Alpha-Equivalence



Equality on the top free variables Possible bijective renamings of top binding variables Recursive call factoring in the renamings

$$\begin{array}{lll} \mathsf{T}\left(\overline{V}\right) &=& \mu A. \ \mathsf{F}(\overline{V},\overline{V},A) & \mathsf{OK} \\ \mathsf{T}\left(\overline{V}\right) &=& \mathsf{T}\left(\overline{V}\right) / \equiv_{\theta} & \mathsf{too \ low-level} \end{array}$$

$$\begin{array}{lll} \mathsf{T}\left(\overline{V}\right) &=& \mu A. \ \mathsf{F}(\overline{V},\overline{V},A) & \mathsf{OK} \\ \mathsf{T}\left(\overline{V}\right) &=& \mathsf{T}\left(\overline{V}\right) / \equiv_{\theta} & \mathsf{too \ low-level} \end{array}$$

Operators on **T**:

- ctor : F $(\overline{V}, \overline{V}, T(\overline{V})) \rightarrow T(\overline{V})$ non-injective constructor
- FVars_i : $\mathbf{T}(\overline{V}) \rightarrow V_i$
- map_T functorial action on T w.r.t. bijections

Theorem: $(T, \overline{FVars}, map_T, ctor)$ is the initial object in a category of models $U = (U, \overline{UFVars}, Umap, Uctor)$ satisfying:

- Umap functorial on bijections
- Umap and UFVars; distribute over Uctor
- Umap satisfies congruence w.r.t. UFVars_i

$$\begin{array}{lll} \mathsf{T}\left(\overline{V}\right) &=& \mu A. \ \mathsf{F}(\overline{V},\overline{V},A) & \mathsf{OK} \\ \mathsf{T}\left(\overline{V}\right) &=& \mathsf{T}\left(\overline{V}\right) / \equiv_{\theta} & \mathsf{too \ low-level} \end{array}$$

Operators on **T**:

- ctor : F $(\overline{V}, \overline{V}, T(\overline{V})) \rightarrow T(\overline{V})$ non-injective constructor
- $\mathsf{FVars}_i : \mathbf{T}(\overline{V}) \to V_i$
- map_T functorial action on T w.r.t. bijections

Theorem: $(T, \overline{FVars}, map_T, ctor)$ is the initial object in a category of models $U = (U, \overline{UFVars}, Umap, Uctor)$ satisfying:

- Umap functorial on bijections
- Umap and UFVars; distribute over Uctor
- Umap satisfies congruence w.r.t. UFVars_i

\Downarrow

Recursor generalizing the state-of-the-art nominal recursors (Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Notation:
$$\mathbf{T}(\overline{V}) = \mu_{\theta} A. F(\overline{V}, \overline{V}, A)$$

Operators on **T**:

- ctor : F $(\overline{V}, \overline{V}, T(\overline{V})) \to T(\overline{V})$ non-injective constructor
- FVars_i : $\mathbf{T}(\overline{V}) \rightarrow V_i$
- map_{T} functorial action on T w.r.t. bijections

Theorem: $(T, \overline{FVars}, map_T, ctor)$ is the initial object in a category of models $\mathcal{U} = (U, \overline{UFVars}, Umap, Uctor)$ satisfying:

- Umap functorial on bijections
- Umap and UFVars, distribute over Uctor
- Umap satisfies congruence w.r.t. UFVars_i

₩

Recursor generalizing the state-of-the-art nominal recursors (Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Closure Properties for MRBNFs

Include standard type constructors: sums, products,

Include nonfree type constructors: fin. sets, bags, prob. distrib., ...

Closed under standard least/greatest fixpoints: lists, trees,

Closed under linearization

Closed under binding-aware least/greatest fixpoints (modulo binding dispatchers) "Side effects": Binding-aware (co)recursors and (co)induction principles (obeying Barendregt's variable convention)

Closure Properties for MRBNFs

Include standard type constructors: sums, products,

Include nonfree type constructors: fin. sets, bags, prob. distrib., ...

Closed under standard least/greatest fixpoints: lists, trees, ...

Closed under linearization

Closed under binding-aware least/greatest fixpoints (modulo binding dispatchers) "Side effects": Binding-aware (co)recursors and (co)induction principles (obeying Barendregt's variable convention)

Modular and flexible specification framework for binding datatypes Plug and play Complex binders made easy

Example: POPLmark Syntax Fragment

Type-variable α , term-variables x, labels I

Types
$$\sigma$$
 ::= $\alpha \mid ...$
Patterns p ::= $x : \sigma \mid \{l_i = p_i \ ^{i \in 1...n}\}$
Terms t ::= $x \mid \Lambda \alpha. t \mid \text{let } p = t_1 \text{ in } t_2$

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ's are binding.

Example: POPLmark Syntax Fragment

Type-variable α , term-variables x, labels I

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ's are binding.

$$\begin{array}{rcl} \mathsf{Type}\left(A\right) &=& \dots \\ \mathsf{Pattern}\left(A,X\right) &=& \left(\mu P.\ X \times \mathsf{Type}\left(A\right) \,+\, \mathsf{FinPFunc}\left(\mathsf{Label},P\right)\right)^{@X} \end{array}$$

Example: POPLmark Syntax Fragment

Type-variable α , term-variables x, labels I

Types
$$\sigma$$
 ::= $\alpha \mid ...$
Patterns p ::= $x : \sigma \mid \{I_i = p_i \mid i \in 1...n\}$
Terms t ::= $x \mid \Lambda \alpha. t \mid \text{let } p_1 = t_1 \text{ in } t_2$

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ's are binding.

$$\begin{array}{rcl} \mathsf{Type}\left(A\right) &=& \dots \\ \mathsf{Pattern}\left(A,X\right) &=& \left(\mu P.\ X \times \mathsf{Type}\left(A\right) + \ \mathsf{FinPFunc}\left(\mathsf{Label},P\right)\right)^{@X} \\ \mathsf{Term}\left(A,X\right) &=& \mu_{\theta} T.\ X + A \times T + \ \mathsf{Pattern}\left(A,X\right) \times T^{2} \end{array}$$

Example: POPLmark Syntax Fragment

Type-variable α , term-variables x, labels I

Types
$$\sigma$$
 ::= $\alpha \mid ...$
Patterns p ::= $x : \sigma \mid \{I_i = p_i \mid i \in 1...n\}$
Terms t ::= $x \mid \Lambda \alpha. t \mid \text{let } p_1 = t_1 \text{ in } t_2$

Assumptions: Term-variables are pairwise distinct in any pattern. In terms, term-variables coming from patterns and type-variables near Λ's are binding.

$$\begin{aligned} \mathsf{Type}\left(A\right) &= & \dots \\ \mathsf{Pattern}\left(A,X\right) &= & (\mu P. \ X \times \mathsf{Type}\left(A\right) + \mathsf{FinPFunc}\left(\mathsf{Label},P\right)\right)^{@X} \\ \mathsf{Term}\left(A,X\right) &= & \mu_{\theta} T. \ X + A \times T + \mathsf{Pattern}\left(A,X\right) \times T^{2} \\ &= & \mu_{\theta} T. \ F\left(A,X,A,X,T\right) \end{aligned}$$

where:

$$F(A', X', A, X, T) = X' + A \times T + Pattern(A', X) \times T^{2}$$

$$\theta = \{(1, 1), (2, 1)\}$$

Related Work: 1999

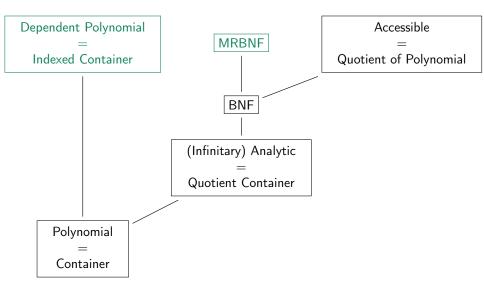
A lot of work on categorical generalizations of the "nameless", De Bruijn representation, pioneered by:

```
Fiore et al. (LICS'99)
Hofmann (LICS'99)
Bird and Paterson (J. Func. Prog. '99)
Altenkirch and Reus (CSL'99)
```

By contrast, our work is within the "nameful" paradigm, generalizing Nominal Logic (Gabbay and Pitts (LICS'99))

(Higher Order Abstract Syntax (HOAS) – the third main paradigm)

Related Work: Relevant Classes of Functors



Related Work: Binders in the Isabelle Ecosystem

Isabelle Nominal2 [Urban and Kaliszyk 2012]

- Good user support
- Complex binders via syntactic format

Our improvements (once the implementation is ready):

- Expressiveness
- Modularity
- Better integration with Isabelle's standard datatypes (which are based on BNFs)

Bindings as Bounded Natural Functors

Jasmin Blanchette, Lorenzo Gheri, Andrei Popescu, Dmitriy Traytel

Vrije Universiteit Amsterdam

Middlesex University London

ETH Zürich

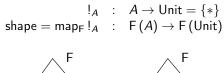
https://www.youtube.com/watch?v=gkq20NqQ2MI

Reserve Slides

$$\mathsf{List}(A)^{@A} = \{ xs \in \mathsf{List}(A) \mid \forall i, j. \ i \neq j \longrightarrow xs_i \neq xs_j \}$$

$$\mathsf{List}(A)^{@A} = \{ xs \in \mathsf{List}(A) \mid \forall i, j. \ i \neq j \longrightarrow xs_i \neq xs_j \}$$

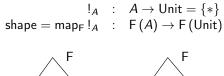
Let $\mathsf{F}:\mathsf{Set}\to\mathsf{Set}$ be a BNF.

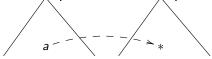


How about:
$$p \in F(A)$$
 linear
... if $\forall q$. shape $q =$ shape $p \longrightarrow |\text{set}_F q| \le |\text{set}_F p|$

$$\mathsf{List}\,(A)^{@A} = \{ xs \in \mathsf{List}\,(A) \mid \forall i, j. \ i \neq j \longrightarrow xs_i \neq xs_j \}$$

Let $\mathsf{F}:\mathsf{Set}\to\mathsf{Set}$ be a BNF.





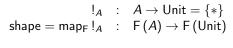
How about: $p \in F(A)$ linear ... if $\forall q$. shape q = shape $p \longrightarrow |\text{set}_F q| \le |\text{set}_F p|$

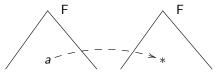
Works for finitary functors.

Fails in general: For F =Stream, $[0, 0, 1, 2, 3, ...] \in F(\mathbb{N})$ linear.

$$\mathsf{List}\,(A)^{@A} = \{xs \in \mathsf{List}\,(A) \mid \forall i, j. \ i \neq j \longrightarrow xs_i \neq xs_j\}$$

Let $\mathsf{F}:\mathsf{Set}\to\mathsf{Set}$ be a BNF.





Better: $p \in F(A)$ linear ... if $\forall q$. shape q = shape $p \longrightarrow \exists f : A \rightarrow A$. map_F f p = q

Works in general.

Gives us back a sub-functor, F[@], of F's restriction to bijections.

Modularity

Let $F : \operatorname{Set}^m \times \operatorname{Set}^m \times \operatorname{Set} \to \operatorname{Set}$ be an MRBNF.

$${f T}\left(\overline{oldsymbol V}
ight)=\mu_{ heta}{f A}.\,{f F}\left(\overline{oldsymbol V},\overline{oldsymbol V},A
ight)$$

Is **T** also an MRBNF?

Modularity

Let $F : \operatorname{Set}^m \times \operatorname{Set}^m \times \operatorname{Set} \to \operatorname{Set}$ be an MRBNF.

$${f T}\left(\overline{m V}
ight)\,=\,\mu_{ heta}{f A}.\,{f F}\left(\overline{m V},\overline{m V},{f A}
ight)$$

Is ${\bf T}$ also an MRBNF?

 $\mathsf{set}_i^\mathsf{T} := \mathsf{FVars}_i$

On bijections, map_T lifted from map_T . But want map_T non-bijective/injective functions too!

Modularity

Let $F : \operatorname{Set}^m \times \operatorname{Set}^m \times \operatorname{Set} \to \operatorname{Set}$ be an MRBNF.

$${f T}\left(\overline{oldsymbol V}
ight)=\mu_{ heta}{f A}.\,{f F}\left(\overline{oldsymbol V},\overline{oldsymbol V},A
ight)$$

Is **T** also an MRBNF?

 $set_i^T := FVars_i$

On bijections, map_T lifted from map_T . But want map_T non-bijective/injective functions too!

 $map_{T} := the capture-avoiding substitution$

Problem: Substitution only behaves well on functions of small support.

So we have F functorial w.r.t. (arbitrary) functions implies **T** functorial only w.r.t. small-support functions.

Solution

Proposal: Binder = Operator on sets $F : \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \to \operatorname{Set}$ that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. arbitrary functions on the *p* free-variable arguments w.r.t. injections on the *m* binding-variable arguments w.r.t. arbitrary functions on the *n* "term" arguments plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

 \parallel

Proposal: Binder = Operator on sets $F : \operatorname{Set}^p \times \operatorname{Set}^m \times \operatorname{Set}^n \to \operatorname{Set}$ that is a Map-Restricted Bounded Natural Functor (MRBNF): w.r.t. small-support functions on the *p* free-variable arguments w.r.t. small-support injections on the *m* binding-vars. arguments w.r.t. arbitrary functions on the *n* "term" arguments plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Proposal: Binder = Operator on sets $F : \text{Set}^m \times \text{Set}^n \to \text{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F?

Proposal: Binder = Operator on sets $F : \text{Set}^m \times \text{Set}^n \to \text{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Finitary Natural Functor (FNF)?

Functor: for
$$f_i : V_i \to V'_i$$
, $g_j : T_j \to T'_j$
map_F $\overline{f} \ \overline{g} : F(\overline{V}, \overline{T}) \to F(\overline{V'}, \overline{T'})$
Natural (container-like): there exist the natural transformations
setⁱ_F : $F(\overline{V}, \overline{T}) \to \mathcal{P}(V_i)$ set^{m+j}_F : $F(\overline{V}, \overline{T}) \to \mathcal{P}(T_j)$
Finitary: setⁱ_F (...), set^{m+j}_F (...) finite

Proposal: Binder = Operator on sets $F : \operatorname{Set}^m \times \operatorname{Set}^n \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for
$$f_i : V_i \to V'_i$$
, $g_j : T_j \to T'_j$
map_F $\overline{f} \ \overline{g} : F(\overline{V}, \overline{T}) \to F(\overline{V'}, \overline{T'})$
Natural (container-like): there exist the natural transformations
set_F^i : F(\overline{V}, \overline{T}) \to \mathcal{P}(V_i) set_F^{m+j} : F(\overline{V}, \overline{T}) \to \mathcal{P}(T_j)
Bounded: For some cardinal bd_F
set_F^i(...) $\leq bd_F$ set_F^{m+j}(...) $\leq bd_F$

Proposal: Binder = Operator on sets $F : \operatorname{Set}^m \times \operatorname{Set}^n \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for
$$f_i : V_i \to V'_i$$
, $g_j : T_j \to T'_j$
map_F $\overline{f} \ \overline{g} : F(\overline{V}, \overline{T}) \to F(\overline{V'}, \overline{T'})$
Natural (container-like): there exist the natural transformations
set^{*i*}_{*F*}: $F(\overline{V}, \overline{T}) \to \mathcal{P}(V_i)$ set^{*m*+*j*}: $F(\overline{V}, \overline{T}) \to \mathcal{P}(T_j)$
Bounded: For some cardinal bd_F
set^{*i*}_{*F*}(...) \leq bd_F set^{*m*+*j*}_{*F*}(...) \leq bd_F
Problem 1:
let rec $v_1 = t_1$ and ... and $v_k = t_k$ in t
 $e = \{(1, 1)\}$
Want to disallow repetitions, as in "let rec $v = t_1$ and $v = t_2$ in t " yet
 $[(v, t_1), (v, t_2)] \in$ List ($V \times T$)

Proposal: Binder = Operator on sets $F : \operatorname{Set}^m \times \operatorname{Set}^n \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for
$$f_i : V_i \to V'_i$$
, $g_j : T_j \to T'_j$
map_F $\overline{f} \ \overline{g} : F(\overline{V}, \overline{T}) \to F(\overline{V'}, \overline{T'})$
Natural (container-like): there exist the natural transformations
setⁱ_F: $F(\overline{V}, \overline{T}) \to \mathcal{P}(V_i)$ set^{m+j}: $F(\overline{V}, \overline{T}) \to \mathcal{P}(T_j)$
Bounded: For some cardinal bd_F
setⁱ_F(...) \leq bd_F set^{m+j}_F(...) \leq bd_F
Problem 1:
let rec $v_1 = t_1$ and ... and $v_k = t_k$ in t
 $F(V, T) = \text{List}(V \times T) \times T$
 $\theta = \{(1, 1)\}$
Want to disallow repetitions, as in "let rec $v = t_1$ and $v = t_2$ in t " yet
 $[(v, t_1), (v, t_2)] \in \text{List}(V \times T)$

Solution: Replace List $(V \times T)$ with List $(V \times T)^{@V}$ where "^{@V}" means "linearize on V", i.e., "exclude V-repetitions"

Proposal: Binder = Operator on sets $F : \operatorname{Set}^m \times \operatorname{Set}^n \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for
$$f_i : V_i \to V'_i$$
, $g_j : T_j \to T'_j$
map_F $\overline{f} \ \overline{g} : F(\overline{V}, \overline{T}) \to F(\overline{V'}, \overline{T'})$
Natural (container-like): there exist the natural transformations
setⁱ_F: $F(\overline{V}, \overline{T}) \to \mathcal{P}(V_i)$ set^{m+j}: $F(\overline{V}, \overline{T}) \to \mathcal{P}(T_j)$
Bounded: For some cardinal bd_F
setⁱ_F(...) \leq bd_F set^{m+j}_F(...) \leq bd_F
Problem 1:
let rec $v_1 = t_1$ and ... and $v_k = t_k$ in t
 $F(V, T) = \text{List}(V \times T)^{@V} \times T$
 $\theta = \{(1, 1)\}$
Want to disallow repetitions, as in "let rec $v = t_1$ and $v = t_2$ in t " yet
 $[(v, t_1), (v, t_2)] \in \text{List}(V \times T)$

Solution: Replace List $(V \times T)$ with List $(V \times T)^{@V}$ where "^{@V}" means "linearize on V", i.e., "exclude V-repetitions"

Proposal: Binder = Operator on sets $F : \operatorname{Set}^m \times \operatorname{Set}^n \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for
$$f_i : V_i \rightarrow V_i$$
 bijections, $g_j : T_j \rightarrow T'_j$
map_F $\overline{f} \ \overline{g} : F(\overline{V}, \overline{T}) \rightarrow F(\overline{V'}, \overline{T'})$
Natural (container-like): there exist the natural transformations
set_F^i : F(\overline{V}, \overline{T}) \rightarrow \mathcal{P}(V_i) set_F^{m+j} : F(\overline{V}, \overline{T}) \rightarrow \mathcal{P}(T_j)
Bounded: For some cardinal bd_F
set_F^i(...) \leq bd_F set_F^{m+j}(...) \leq bd_F
Problem 1:
let rec $v_1 = t_1$ and ... and $v_k = t_k$ in t
 $e = \{(1, 1)\}$
Want to disallow repetitions, as in "let rec $v = t_1$ and $v = t_2$ in t " yet
 $[(v, t_1), (v, t_2)] \in$ List $(V \times T)$

Solution: Replace List $(V \times T)$ with List $(V \times T)^{@V}$ where "^{@V}" means "linearize on V", i.e., "exclude V-repetitions"

Proposal: Binder = Operator on sets $F : Set^{p} \times Set^{m} \times Set^{n} \rightarrow Set$ plus binding dispatcher relation $\theta \subseteq \{1, ..., m\} \times \{1, ..., n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for
$$f_i : V_i \to V_i$$
 bijections, $g_j : T_j \to T'_j$
map_F $\overline{f} \ \overline{g} : F(\overline{V}, \overline{T}) \to F(\overline{V'}, \overline{T'})$
Natural (container-like): there exist the natural transformations
set_F^i : F(\overline{V}, \overline{T}) \to \mathcal{P}(V_i) set_F^{m+j} : F(\overline{V}, \overline{T}) \to \mathcal{P}(T_j)
Bounded: For some cardinal bd_F
set_F^i(...) $\leq bd_F$ set_F^{m+j}(...) $\leq bd_F$

Problem 2:

w (v). p

Free variables are currently completely ignored.

Proposal: Binder = Operator on sets $F : \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for $h_k : W_k \to W_k, f_i : V_i \to V_i$ bijections, $g_j : T_j \to T'_j$ $\max_{P_F} \overline{h} \ \overline{f} \ \overline{g} : F(\overline{W}, \overline{V}, \overline{T}) \to F(\overline{W}, \overline{V}, \overline{T'})$ Natural (container-like): there exist the natural transformations $\operatorname{set}_F^k : F(\overline{W}, \overline{V}, \overline{T}) \to \mathcal{P}(W_k) \quad \operatorname{set}_F^{p+i} : F(\overline{W}, \overline{V}, \overline{T}) \to \mathcal{P}(V_i) \quad \operatorname{set}_F^{p+m+j} : F(\overline{W}, \overline{V}, \overline{T}) \to \mathcal{P}(T_j)$ Bounded: For some cardinal bd_F

 $\operatorname{set}_F^k(\ldots) \leq \operatorname{bd}_{\mathsf{F}} \quad \operatorname{set}_F^{p+i}(\ldots) \leq \operatorname{bd}_{\mathsf{F}} \quad \operatorname{set}_F^{p+m+j}(\ldots) \leq \operatorname{bd}_{\mathsf{F}}$

Problem 2:

p = m = n = 1 $w (v). p \qquad \qquad F(W, V, T) = W \times V \times T$ $\theta = \{(1, 1)\}$

Free variables are currently completely ignored. Solution: Have free-variable args. in addition to binding-variable args.

Proposal: Binder = Operator on sets $F : \operatorname{Set}^{p} \times \operatorname{Set}^{m} \times \operatorname{Set}^{n} \to \operatorname{Set}$ plus binding dispatcher relation $\theta \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for $h_k : W_k \to W_k, f_i : V_i \to V_i$ bijections, $g_j : T_j \to T'_j$ $\max_{P_F} \overline{h} \ \overline{f} \ \overline{g} : F(\overline{W}, \overline{V}, \overline{T}) \to F(\overline{W}, \overline{V}, \overline{T'})$ Natural (container-like): there exist the natural transformations $\operatorname{set}_F^k : F(\overline{W}, \overline{V}, \overline{T}) \to \mathcal{P}(W_k) \quad \operatorname{set}_F^{p+i} : F(\overline{W}, \overline{V}, \overline{T}) \to \mathcal{P}(V_i) \quad \operatorname{set}_F^{p+m+j} : F(\overline{W}, \overline{V}, \overline{T}) \to \mathcal{P}(T_j)$ Bounded: For some cardinal bd_F

 $\operatorname{set}_F^k(\ldots) \leq \operatorname{bd}_{\mathsf{F}} \quad \operatorname{set}_F^{p+i}(\ldots) \leq \operatorname{bd}_{\mathsf{F}} \quad \operatorname{set}_F^{p+m+j}(\ldots) \leq \operatorname{bd}_{\mathsf{F}}$

Problem 2:

p = m = n = 1 $w (v). p \qquad \qquad F(W, V, T) = W \times V \times T$ $\theta = \{(1, 1)\}$

Free variables are currently completely ignored. Solution: Have free-variable args. in addition to binding-variable args.