
Bindings as Bounded Natural Functors

Jasmin Blanchette, Lorenzo Gheri, Andrei Popescu, Dmitriy Traytel

λ
→

∀
=Is

ab
el
le

β

α

Vrije Universiteit Amsterdam Middlesex University London ETH Zürich

Bindings as Bounded Natural Functors

Jasmin Blanchette, Lorenzo Gheri, Andrei Popescu, Dmitriy Traytel

Vrije Universiteit Amsterdam Middlesex University London ETH Zürich

https://www.youtube.com/watch?v=gkq2ONqQ2MI

https://www.youtube.com/watch?v=gkq2ONqQ2MI

Our Contribution

Modular framework for datatypes with bindings
- Complex variable binders
- Infinitary syntax too (including coinductive datatypes)

Formalized in the Isabelle/HOL proof assistant

It is being implemented as a definitional package λ
→

∀
=Is

ab
el
le

β

α

What is a Binder?

Several very expressive syntactic formats:
CαMl [Pottier 2006]
Ott [Sewell et al. 2010]
Unbound [Weirich et al. 2011]
Isabelle Nominal2 [Urban and Kaliszyk 2012]
Needle&Knot [Keuchel et al. 2016]

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?
Several very expressive syntactic formats:

CαMl [Pottier 2006]
Ott [Sewell et al. 2010]
Unbound [Weirich et al. 2011]
Isabelle Nominal2 [Urban and Kaliszyk 2012]
Needle&Knot [Keuchel et al. 2016]

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?
Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?
Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t

m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

What is a Binder?
Binder = Mechanism for combining any variables with any terms.

Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Think: F (V1, . . . ,Vm,T1, . . . ,Tn) combines variables vi ∈ Vi and
terms tj ∈ Tj such that vi ∈ Vi binds in tj ∈ Tj if (i , j) ∈ θ.

λv . t
m = n = 1
F (V ,T) = V × T
θ = {(1, 1)}

let v = t1 in t2

m = 1, n = 2
F (V ,T1,T2) = V × T1 × T2
θ = {(1, 2)}

let rec v1 = t1 and . . . and vk = tk in t
m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Finitary?

F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}

←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Finitary?

F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Finitary?
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)× Tbl
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor?

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)@V × T
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

let rec (v = t)∗ in t
F (V ,T) =
List (V × T)@V × T
θ = {(1, 1)}

let rec v = t1 and v = t2 in t

[(v , t1), (v , t2)] ∈ List (V × T)

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

w (v). p

p = m = n = 1
F (W ,V ,T) = W × V × T
θ = {(1, 1)}

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w

v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

Structure of Binders
Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Bounded
F “Natural” (Container-like)

Functor on (binding) variable arguments only w.r.t. injections

w (v). p
p = m = n = 1
F (W ,V ,T) = W × V × T
θ = {(1, 1)}

p ∈ F (V ,T)

{w , . . .} ←−−−−−−

w v t

−−−−−−→ {t, . . .}
←
−−

{v , . . .}

More About Container-Like Functors

F : Set→ Set
Functor mapF :

∏
A,B∈Set(A→ B)→ F (A)→ F (B)

Relator relF :
∏

A,B∈Set P (A× B)→ P(F (A)× F (B))

F F

a
++
f a

F F

a
R

a′

mapF f relF R

Container types [Hoogendijk and de Moor 2000]
Containers [Abbott et al. 2005]
Bounded Natural Functors (BNFs) [Traytel et al. 2012]

More About Container-Like Functors

F : Set→ Set
Functor mapF :

∏
A,B∈Set(A→ B)→ F (A)→ F (B)

Relator relF :
∏

A,B∈Set P (A× B)→ P(F (A)× F (B))

F F

a
++
f a

F F

a
R

a′

mapF f relF R

Container types [Hoogendijk and de Moor 2000]
Containers [Abbott et al. 2005]
Bounded Natural Functors (BNFs) [Traytel et al. 2012]

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. arbitrary functions on the p free-variable arguments
w.r.t. injections on the m binding-variable arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Term-agnostic: Binds any hypothetical terms.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):
w.r.t. small-support endofunctions on the p free-variable arguments
w.r.t. small-support endobijections on the m binding-vars. arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Term-agnostic: Binds any hypothetical terms.

Structure of Binders (Summary)

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):
w.r.t. small-support endofunctions on the p free-variable arguments
w.r.t. small-support endobijections on the m binding-vars. arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Term-agnostic: Binds any hypothetical terms.

Constructing Terms from Binders

F : Setp × Setm × Set→ Set

Assume p = m.

Raw terms:

T (V) = µA. F(V ,V ,A)

v ′ v t©

Alpha-quotiented terms: T (V) = T (V) /≡θ

Constructing Terms from Binders

F : Setp × Setm × Set→ Set

Assume p = m.

Raw terms:

T (V) = µA. F(V ,V ,A)

v ′ v t©

Alpha-quotiented terms: T (V) = T (V) /≡θ

Constructing Terms from Binders

F : Setp × Setm × Set→ Set

Assume p = m.

Raw terms: T (V) = µA. F(V ,V ,A)

v ′ v t©

Alpha-quotiented terms: T (V) = T (V) /≡θ

Constructing Terms from Binders

F : Setp × Setm × Set→ Set

Assume p = m.

Raw terms: T (V) = µA. F(V ,V ,A)

v ′ v t©

Alpha-quotiented terms: T (V) = T (V) /≡θ

Inductive Definition of Alpha-Equivalence

F F

w

=

v

∃ f

t

mapT f _ ≡θ _

w ′ v ′ t ′

Equality on the top free variables
Possible bijective renamings of top binding variables
Recursive call factoring in the renamings

Abstract Characterization of Alpha-Quotinented Terms?

T (V) = µA. F(V ,V ,A) OK
T (V) = T (V) / ≡θ too low-level

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Abstract Characterization of Alpha-Quotinented Terms?

T (V) = µA. F(V ,V ,A) OK
T (V) = T (V) / ≡θ too low-level

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Abstract Characterization of Alpha-Quotinented Terms?

T (V) = µA. F(V ,V ,A) OK
T (V) = T (V) / ≡θ too low-level

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Abstract Characterization of Alpha-Quotinented Terms?

Notation: T (V) = µθA. F(V ,V ,A)

Operators on T:
- ctor : F (V ,V ,T (V))→ T (V) non-injective constructor
- FVarsi : T (V)→ Vi

- mapT functorial action on T w.r.t. bijections

Theorem: (T,FVars,mapT, ctor) is the initial object in a category
of models U = (U,UFVars,Umap,Uctor) satisfying:

- Umap functorial on bijections
- Umap and UFVarsi distribute over Uctor
- Umap satisfies congruence w.r.t. UFVarsi

⇓
Recursor generalizing the state-of-the-art nominal recursors
(Norrish 2004, Pitts 2006, Urban and Berghofer 2006, GP 2017)

Closure Properties for MRBNFs
Include standard type constructors: sums, products, . . .

Include nonfree type constructors: fin. sets, bags, prob. distrib., . . .

Closed under standard least/greatest fixpoints: lists, trees, . . .

Closed under linearization

Closed under binding-aware least/greatest fixpoints (modulo
binding dispatchers)
“Side effects”: Binding-aware (co)recursors and (co)induction
principles (obeying Barendregt’s variable convention)

⇓
Modular and flexible specification framework for binding datatypes

Plug and play
Complex binders made easy

Closure Properties for MRBNFs
Include standard type constructors: sums, products, . . .

Include nonfree type constructors: fin. sets, bags, prob. distrib., . . .

Closed under standard least/greatest fixpoints: lists, trees, . . .

Closed under linearization

Closed under binding-aware least/greatest fixpoints (modulo
binding dispatchers)
“Side effects”: Binding-aware (co)recursors and (co)induction
principles (obeying Barendregt’s variable convention)

⇓
Modular and flexible specification framework for binding datatypes

Plug and play
Complex binders made easy

Example: POPLmark Syntax Fragment
Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let p = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Example: POPLmark Syntax Fragment
Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let p = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Example: POPLmark Syntax Fragment
Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let _p_ = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Example: POPLmark Syntax Fragment
Type-variable α, term-variables x , labels l

Types σ ::= α | . . .
Patterns p ::= x : σ | {li = pi

i ∈ 1...n}
Terms t ::= x | Λα. t | let _p_ = t1 in t2

Assumptions: Term-variables are pairwise distinct in any pattern.
Assumptions: In terms, term-variables coming from patterns and
Assumptions: type-variables near Λ’s are binding.

Type (A) = . . .
Pattern (A,X) = (µP. X×Type (A) + FinPFunc (Label,P))@X

Term (A,X) = µθT . X + A× T + Pattern (A,X)×T 2

= µθT . F (A,X ,A,X ,T)
where:

F (A′,X ′,A,X ,T) = X ′ + A× T + Pattern (A′,X)×T 2

θ = {(1, 1), (2, 1)}

Related Work: 1999

A lot of work on categorical generalizations of the “nameless”,
De Bruijn representation, pioneered by:

Fiore et al. (LICS’99)
Hofmann (LICS’99)
Bird and Paterson (J. Func. Prog. ’99)
Altenkirch and Reus (CSL’99)

By contrast, our work is within the “nameful” paradigm,
generalizing Nominal Logic (Gabbay and Pitts (LICS’99))

(Higher Order Abstract Syntax (HOAS) – the third main paradigm)

Related Work: Relevant Classes of Functors

Dependent Polynomial
=

Indexed Container
MRBNF

Accessible
=

Quotient of Polynomial

BNF

(Infinitary) Analytic
=

Quotient Container

Polynomial
=

Container

Related Work: Binders in the Isabelle Ecosystem

λ
→

∀
=Is

ab
el
le

β

α

Isabelle Nominal2 [Urban and Kaliszyk 2012]
- Good user support
- Complex binders via syntactic format

Our improvements (once the implementation is ready):
- Expressiveness
- Modularity
- Better integration with Isabelle’s standard datatypes (which
are based on BNFs)

Bindings as Bounded Natural Functors

Jasmin Blanchette, Lorenzo Gheri, Andrei Popescu, Dmitriy Traytel

Vrije Universiteit Amsterdam Middlesex University London ETH Zürich

https://www.youtube.com/watch?v=gkq2ONqQ2MI

https://www.youtube.com/watch?v=gkq2ONqQ2MI

Reserve Slides

The Linearization Operator @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Let F : Set→ Set be a BNF.

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

a ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape q = shape p −→ |setF q| ≤ |setF p|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

The Linearization Operator @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Let F : Set→ Set be a BNF.

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

a ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape q = shape p −→ |setF q| ≤ |setF p|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

The Linearization Operator @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Let F : Set→ Set be a BNF.

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

a ** ∗

How about: p ∈ F (A) linear
... if ∀q. shape q = shape p −→ |setF q| ≤ |setF p|

Works for finitary functors.

Fails in general: For F = Stream, [0, 0, 1, 2, 3, . . .] ∈ F (IN) linear.

The Linearization Operator @

List (A)@A = {xs ∈ List (A) | ∀i , j . i 6= j −→ xs i 6= xs j}

Let F : Set→ Set be a BNF.

!A : A→ Unit = {∗}
shape = mapF !A : F (A)→ F (Unit)

F F

a ** ∗

Better: p ∈ F (A) linear
... if ∀q. shape q = shape p −→ ∃f : A→ A. mapF f p = q

Works in general.

Gives us back a sub-functor, F@, of F’s restriction to bijections.

Modularity

Let F : Setm × Setm × Set→ Set be an MRBNF.

T (V) = µθA. F (V ,V ,A)

Is T also an MRBNF?

setTi := FVarsi

On bijections, mapT lifted from mapT.
But want mapT non-bijective/injective functions too!

⇓
mapT := the capture-avoiding substitution

Problem: Substitution only behaves well on functions of small support.

So we have F functorial w.r.t. (arbitrary) functions
implies T functorial only w.r.t. small-support functions.

Modularity

Let F : Setm × Setm × Set→ Set be an MRBNF.

T (V) = µθA. F (V ,V ,A)

Is T also an MRBNF?

setTi := FVarsi

On bijections, mapT lifted from mapT.
But want mapT non-bijective/injective functions too!

⇓
mapT := the capture-avoiding substitution

Problem: Substitution only behaves well on functions of small support.

So we have F functorial w.r.t. (arbitrary) functions
implies T functorial only w.r.t. small-support functions.

Modularity

Let F : Setm × Setm × Set→ Set be an MRBNF.

T (V) = µθA. F (V ,V ,A)

Is T also an MRBNF?

setTi := FVarsi

On bijections, mapT lifted from mapT.
But want mapT non-bijective/injective functions too!

⇓
mapT := the capture-avoiding substitution

Problem: Substitution only behaves well on functions of small support.

So we have F functorial w.r.t. (arbitrary) functions
implies T functorial only w.r.t. small-support functions.

Solution

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):

w.r.t. arbitrary functions on the p free-variable arguments
w.r.t. injections on the m binding-variable arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

⇓

Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
that is a Map-Restricted Bounded Natural Functor (MRBNF):
w.r.t. small-support functions on the p free-variable arguments
w.r.t. small-support injections on the m binding-vars. arguments
w.r.t. arbitrary functions on the n “term” arguments

plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F?

How about Finitary Natural Functor (FNF)?

Functor: for fi : Vi → V ′i , gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Finitary: setiF (. . .), setm+j
F (. . .) finite

blah

Problem 1:
let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

Want to disallow repetitions, as in “let rec v = t1 and v = t2 in t” yet
[(v , t1), (v , t2)] ∈ List (V × T)

Solution: Replace List (V × T) with List (V × T)@V

where “@V ” means “linearize on V ”, i.e., “exclude V -repetitions”

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Finitary Natural Functor (FNF)?

Functor: for fi : Vi → V ′i , gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Finitary: setiF (. . .), setm+j
F (. . .) finite

blah

Problem 1:
let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

Want to disallow repetitions, as in “let rec v = t1 and v = t2 in t” yet
[(v , t1), (v , t2)] ∈ List (V × T)

Solution: Replace List (V × T) with List (V × T)@V

where “@V ” means “linearize on V ”, i.e., “exclude V -repetitions”

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for fi : Vi → V ′i , gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Bounded: For some cardinal bdF

setkF (. . .) ≤ bdF

setiF (. . .) ≤ bdF setm+j
F (. . .) ≤ bdF

Problem 1:
let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

Want to disallow repetitions, as in “let rec v = t1 and v = t2 in t” yet
[(v , t1), (v , t2)] ∈ List (V × T)

Solution: Replace List (V × T) with List (V × T)@V

where “@V ” means “linearize on V ”, i.e., “exclude V -repetitions”

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for fi : Vi → V ′i , gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Bounded: For some cardinal bdF

setkF (. . .) ≤ bdF

setiF (. . .) ≤ bdF setm+j
F (. . .) ≤ bdF

Problem 1:
let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

Want to disallow repetitions, as in “let rec v = t1 and v = t2 in t” yet
[(v , t1), (v , t2)] ∈ List (V × T)

Solution: Replace List (V × T) with List (V × T)@V

where “@V ” means “linearize on V ”, i.e., “exclude V -repetitions”

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for fi : Vi → V ′i , gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Bounded: For some cardinal bdF

setkF (. . .) ≤ bdF

setiF (. . .) ≤ bdF setm+j
F (. . .) ≤ bdF

Problem 1:
let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)× T
θ = {(1, 1)}

Want to disallow repetitions, as in “let rec v = t1 and v = t2 in t” yet
[(v , t1), (v , t2)] ∈ List (V × T)

Solution: Replace List (V × T) with List (V × T)@V

where “@V ” means “linearize on V ”, i.e., “exclude V -repetitions”

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for fi : Vi → V ′i , gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Bounded: For some cardinal bdF

setkF (. . .) ≤ bdF

setiF (. . .) ≤ bdF setm+j
F (. . .) ≤ bdF

Problem 1:
let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)@V × T
θ = {(1, 1)}

Want to disallow repetitions, as in “let rec v = t1 and v = t2 in t” yet
[(v , t1), (v , t2)] ∈ List (V × T)

Solution: Replace List (V × T) with List (V × T)@V

where “@V ” means “linearize on V ”, i.e., “exclude V -repetitions”

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for fi : Vi → Vi bijections, gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Bounded: For some cardinal bdF

setkF (. . .) ≤ bdF

setiF (. . .) ≤ bdF setm+j
F (. . .) ≤ bdF

Problem 1:
let rec v1 = t1 and . . . and vk = tk in t

m = n = 1
F (V ,T) = List (V × T)@V × T
θ = {(1, 1)}

Want to disallow repetitions, as in “let rec v = t1 and v = t2 in t” yet
[(v , t1), (v , t2)] ∈ List (V × T)

Solution: Replace List (V × T) with List (V × T)@V

where “@V ” means “linearize on V ”, i.e., “exclude V -repetitions”

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for fi : Vi → Vi bijections, gj : Tj → T ′j
Functor: mapF f g : F (V ,T)→ F (V ′,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk)

setiF :F (V ,T)→ P (Vi) setm+j
F :F (V ,T)→ P (Tj)

Bounded: For some cardinal bdF

setkF (. . .) ≤ bdF

setiF (. . .) ≤ bdF setm+j
F (. . .) ≤ bdF

Problem 2:

w (v). p

p = m = n = 1
F (W ,V ,T) = W × V × T
θ = {(1, 1)}

Free variables are currently completely ignored.

Solution: Have free-variable args. in addition to binding-variable args.

blah

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for hk : Wk →Wk ,fi : Vi → Vi bijections, gj : Tj → T ′j
Functor: mapF h f g : F (W ,V ,T)→ F (W ,V ,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk) setp+i
F :F (W ,V ,T)→ P (Vi) setp+m+j

F :F (W ,V ,T)→ P (Tj)

Bounded: For some cardinal bdF
setkF (. . .) ≤ bdF setp+i

F (. . .) ≤ bdF setp+m+j
F (. . .) ≤ bdF

Problem 2:

w (v). p
p = m = n = 1
F (W ,V ,T) = W × V × T
θ = {(1, 1)}

Free variables are currently completely ignored.
Solution: Have free-variable args. in addition to binding-variable args.

blah

Structure of Binders: More Details
Proposal: Binder = Operator on sets F : Setp × Setm × Setn → Set
plus binding dispatcher relation θ ⊆ {1, . . . ,m} × {1, . . . , n}.

Can assume more about F? How about Bounded Natural Functor (BNF)?

Functor: for hk : Wk →Wk ,fi : Vi → Vi bijections, gj : Tj → T ′j
Functor: mapF h f g : F (W ,V ,T)→ F (W ,V ,T ′)
Natural (container-like): there exist the natural transformations

setkF :F (W ,V ,T)→ P (Wk) setp+i
F :F (W ,V ,T)→ P (Vi) setp+m+j

F :F (W ,V ,T)→ P (Tj)

Bounded: For some cardinal bdF
setkF (. . .) ≤ bdF setp+i

F (. . .) ≤ bdF setp+m+j
F (. . .) ≤ bdF

Problem 2:

w (v). p
p = m = n = 1
F (W ,V ,T) = W × V × T
θ = {(1, 1)}

Free variables are currently completely ignored.
Solution: Have free-variable args. in addition to binding-variable args.

blah

