A Framework for Verifying the Collision Freeness
of Collaborative Robots (Work in Progress)

Artur Graczyk Marialena Hadjikosti Andrei Popescu
{apgraczykl,mhadjicostil,a.popescu}@sheffield.ac.uk

University of Sheffield, UK

Abstract. Collision avoidance is a major problem when robotic devices
are being deployed to perform complex collaborative tasks. We present a
vision for a framework that makes it convenient to program collaborative
robots and to verify that their behaviour is collision-free. It consists of a
domain-specific language that is shallowly embedded in the ROS (Robot
Operating System) framework and a translation into a programming
language that is deeply embedded in the Isabelle/HOL theorem prover.

1 Vision

Our research targets collaborative tasks involving the movement of robots (mobile
platforms or robotic arms). Such tasks are naturally expressed as controlled
sequences of commands requesting the movement of robots to specific locations
where to perform specific activities.

Collisions between two robots can occur in several scenarios, including:

Scenario 1. Two robots must visit the same location during a task. E.g., one
robot brings an item to a location, from where another robot picks it up.
Scenario 2. While moving between two locations, the trajectories of two robots
intersect. E.g., two robots need to enter an enclosure through the same gate.

Scenario 3. The trajectory of one robot touches the location where another
robot performs a task. E.g., the second robot does a repairing job at the
gate through which the first robot must enter.

Each scenario above suggests a possible collision point in space, i.e., a point
that each of the two robots need to visit. Communication with the robots and
subsequent synchronization can avoid such collisions, for example:

— In Scenario 1, the program can ask the second robot to wait at a safe distance
until the first robot has successfully delivered the object to the given location
and has moved away from that location.

— In Scenario 2, one can implement a mutual exclusion protocol whereby the
first robot who announces its intention to go through the gate makes any
other robot who wants to enter, pause and wait.

— In Scenario 3, the robot needing to pass through the gate could wait for
the repairer robot to finish; or one might implement a more involved protocol
whereby, depending on the urgency of the task, the repairer robot could pause
its activity and move aside to let the other robot pass.

What all the discussed scenarios have in common is that they are fairly
abstract: we can understand the collision problems that they raise in terms of
the coordinates of the targeted locations and (a conservative over-approximation
of) the sizes of the robots. And the solutions we discussed for these problems are
equally abstract; indeed, they can be expressed in a high-level robot command
language that tells the robots what movements to make, and in which sequence
and under which conditions—but does not indicate how they should move from
one location to another. In short, under this abstract view, both the collision
problems and their solutions refer to the what but not to the how. This abstract
view enables the following fruitful analogy: Robot Collisions =~ Data Races.

Of course, for collisions we are not talking about the usual data races, which
take place in the digital space, but about races in the physical space. However,
the ideas are essentially the same: While in concurrency one requests that the
executions of two processes (or threads) never enter certain critical sections
of their code at the same time, with collisions one requests that, during a
collaborative task, the trajectories of two robots are never crossing each other.
Moreover, it is in principle possible for robot programs to “internalize” the
information about collision, in that the avoidance of collision can be mapped
to the execution of certain critical sections, just like in concurrency. This has
an important methodological consequence: Verification and analysis techniques
from concurrency can be adapted to produce collision avoidance guarantees for
collaborating robots. In this ongoing work, we are bringing to fruition some of
the consequences of this analogy with concurrent programming:

— developing a formal semantics of a robot programming language and a property
specification language that regard collisions as a form of data races, and

— performing an encoding of collisions as actual data races whose absence can
be proved using concurrency verification and analysis tools.

2 Achieving the Vision

Achieving this vision requires the following;:

— choosing and adapting a robot programming environment (discussed in §2.1),

— setting up a formal verification framework (discussed in § 2.2), and

— building the infrastructure for protected navigation, including a path analysis
tool for computing safe corridors (not detailed in this paper).

Importantly, it also requires connecting these three components, which must

exchange data between each other in order to achieve overall strong collision

freeness guarantees covering both fundamental and incidental collision hazards.

This will happen through the following tools:

— a code generator connecting the verification framework with the robotic
programming environment,

— a tool for automatically transporting information from within the verification
framework to a navigation path analysis tool, and

— atool for plugging the computed corridors into the ROS run-time environment,
to change the way robots view the physical space for navigation purposes.

Of course, there will be some assumptions about the robot environment and
the navigation system in order for the formally proved guarantees to hold; for
example, it will be assumed that the navigation system keeps the robot within
the limits of the computed corridors (which in turn relies on the correctness of
certain navigation algorithms).

2.1 Robot Programming Environment

Our goal is to have a practical programming environment, in which we can
easily program collaborative robotic tasks in a transparent fashion, suitable for
verification. Because of the practicality desideratum, we have chosen the ROS
system as implemented in Python via the rospy library—which is widely used
by robot practitioners.

However, at its core the ROS framework employs a model of communication
(based on topics and /or services) that is very versatile but somewhat bureaucratic.
For this reason, we implemented, on top of ROS, an API for enabling more direct
communication with the robotic devices (§2.1.1). The user of the API does not
need to explicitly create, use or subscribe to topics or services. Rather, the
creation of these entities happens behind the scenes, and the API allows one
to issue direct movement commands to the robots, and send inquiries to them
about their status.

The API thus abstracts away from the communication complexity, allowing
one to focus on programming the movements of the robots, which makes the
programs more amenable to collision-freeness verification. As it will be sketched
in § 2.2, the functions of the API have been not only implemented in Python, but
have also been given a formal semantics in our verification framework—for the
purpose of connecting the programming and verification platforms. In addition to
the API, the connection between the two platforms also requires an identification
of a domain-specific language (DSL), covered by a formal semantics. Our DSL
is a Turing-complete multi-threaded fragment of Python featuring calls to the
APT as atomic statements (§2.1.2).

2.1.1 ROS-based API The API consists of functions for initializing, moving

and sending inquiries to the robots for various pieces of information. More

precisely, we have the following functions, with the following behaviors:

— initRobot: Takes a robot ID and the coordinates of a desired initial position
and initializes a robot at the given position.

— moveTo: Takes a robot ID and a target position and issues a command to the
indicated robot for moving to the indicated position.

— getSuccessStatus: Takes a robot ID and sends an inquiry to the given robot
on whether the last attempted action was completed successfully.

— getMovingStatus: Takes a robot ID and determines whether the robot is
currently moving.

— getPosition: Takes a robot ID and returns the robot’s current position.
These functions were chosen to have a simple and intuitive semantics, and

to allow the programming of interesting examples.

2.1.2 Python/ROS-based DSL Below is the syntax of our domain-specific
language:

Lit ::=IntLit | RealLit | BoolLit | StringLit
Op; m=— | not

Op, w=+ [—[*][%|=][and|or
RobotID ::= StringlLit

Exp = Var | Lit | Op; Exp | Exp Op, Exp |

getSuccessStatus (RobotID) |
getMovingStatus (RobotID) |
getPosition (RobotID)

Coord ::= (ReallLit, RealLit) for now, two dimensions only
ACom :i=skip | Var = Exp; | moveTo (RobotID, Coord);
InitGV ::= initGlobalVar(Var, Exp)
RobotInfo ::=...
InitR ::= initRobot(RobotID, RobotInfo)
ISec == InitGV* InitR*
Com == ACom |
Com Com |

if (Exp) {Com} else {Com} |
while (Exp) {Com}

Thread ::=1Sec Com

Prog ::= Thread”

We have the usual real, integer, boolean and strings expressions (built from
literals and operators—logical, arithmetical, etc.), as well as calls to our API
observation functions (in blue), which take robot IDs parameters (string literals).
Only well-typed programs are accepted, but we omit the obvious typing.

The atomic commands are skip (i.e., “do nothing”), assignments of expressions
to variables, and calls to the robot moving function of our API. The moving
function takes a robot ID and a coordinate. For now, coordinates are just pairs
of numbers, since initially we focus on two-dimensional moves—but both the
verification and the programming frameworks have been built in such a way
that an upgrade to three dimensions can be made without much rewriting.

Finally, programs consist of multiple threads. We opted for a multi-threaded
DSL (using the multi-threading facilities of Python) because this makes it easier
to program collaborative tasks. Usually there is one thread dedicated to each
participating robot, but our framework does not impose that—indeed, any thread
can issue commands to any robot.

A thread consists of an initialization section (ISec) and a compound command
(Com). In the initialization section, the global variables (visible in all the threads
hence usable for inter-thread communication) are initialized with expressions,
and the robots are initialized with “robot info” that has a format specific to
each type of robot (e.g., various types of robotic arms or mobile platforms). Any
variable that is not initialized as global is assumed to be local. The compound

command is the actual code of the thread, written in a while language defined
on top of the atomic commands.

This DSL, which (as mentioned) was implemented in Python on top of ROS,
has the runtime behavior that one might expect. Thus, unless the code contains
synchronization logic (e.g., waiting for a global flag to become true), the threads’
commands are executed concurrently, so any ordering between the commands
in different threads is possible. When a robot is asked for some information (via
an API call in an expression), we can assume it will answer in a certain amount
of time, so not necessarily instantly—any collaborative task program should
take this into account, for example, the implemented protocol should take into
consideration that a response to getPosition may become outdated. Similarly,
when a “move to” command is issued (as discussed in §2.1.1) the robot will put
this command in its queue and will get to it when it finishes the other commands
from the queue (which it has received before).

The language does not contain timed commands. Moreover, we have no
information about the speed with which a robot performs its tasks; but can only
learn of the current status if we ask for it. These design decisions are intentional,
since we aim for collision-freeness gurantees that do not rely on time.

2.2 Verification and Analysis Infrastructure

We have chosen the theorem prover Isabelle as the primary host of our verification
infrastructure, because of its versatility and expressiveness. To enable verification,
we will connect our programming environment with Isabelle. The identification of
a suitable APT and DSL for programming robot behaviors in a hassle-free manner
(discussed in §2.1) has been a major step towards achieving this connection.
Indeed, by isolating a relatively small fragment of Python and defining a simple
interface to ROS-managed robots has created a manageable formalization task.

We have already specified a formal semantics of our API and DSL in Isabelle.
To connect the Python/ROS DSL implementation with the Isabelle counterpart,
we are implementing a translation (a code generator) between the two. This way,
for example, the robot programmer can use the DSL to program the desired
robot behavior, then the verification expert can employ the Python-to-Isabelle
translation to obtain a copy of the program in Isabelle, where collision-freeness
can be verified. This translation will be part of the trusted code base, and we
will validate its soundness via testing.

From a formal perspective, collision freeness is a safety property (“something
bad never happens”) and has been defined as such in Isabelle. The formal
semantics represents, in addition to the usual state containing values for the
global and local variables, a “robot store” that keeps the status of each robot
involved in the program—indicating whether the robot is currently stalling or
moving between two waypoints, and the queue of tasks for which the robot
has already received commands. In this context, collision freeness is formulated
as follows: It is never the case that two robots are at the same time engaged in
trajectories (i.e., pairs of waypoints) that can collide. The “can collide” predicate,
which takes two trajectories (i.e., two pairs of positions) and returns true or false,

is currently left generic in Isabelle. It will be instantiated to suitable concrete
predicates based on domain-specific knowledge (obtained with the help of robot
experts) about the type of the robot and its spatial and moving characteristics,
and the known obstacles at the site. For example, if we have a room with only
one gate and two trajectories whose start locations are outside the room and
whose target locations are inside the room, then the “can collide” predicate will
return true. Note that the “can collide” predicate will also able to accommodate
properties such as ”physical” starvation, when two robots both need to enter
some space but neither are ever able to.

3 (Very Rough Summary of) Related Work

The general area of robotic system safety assurance and verification is a large and
rapidly growing area.! Important subareas include the verification of autonomous
robotic systems [1,4] and of industrial collaborative robots [2] using methods
such as theorem proving, model checking and safety controller synthesis and
monitoring. The employed formal models include timed automata [3] and process
algebras [5]. Our work will mostly apply to robotic systems that are involved in
pre-determined and largely pre-scripted collaborative tasks.

Acknowledgment. We thank the three anonymous reviewers for their valuable
comments and suggestions, which led to the improvement of the presentation.

References

1. Clare Dixon (2020): Verifying Autonomous Robots: Challenges and Reflections
(Invited Talk). In Emilio Munoz-Velasco, Ana Ozaki & Martin Theobald, editors:
TIME 2020, LIPIcs 178, pp. 1:1-1:4, doi:10.4230/LIPIcs.TIME.2020.1.

2. James A. Douthwaite, Benjamin Lesage, Mario Gleirscher, Radu Calinescu,
Jonathan M. Aitken, Rob Alexander & James Law (2021): A Modular Digital
Twinning Framework for Safety Assurance of Collaborative Robotics. Frontiers
Robotics AI 8, p. 758099, doi:10.3389/frobt.2021.758099.

3. Raju Halder, José Proenga, Nuno Macedo & André Santos (2017): Formal
Verification of ROS-Based Robotic Applications Using Timed-Automata. In:
FormaliSE, pp. 44-50, doi:10.1109/FormaliSE.2017.9.

4. Matt Luckcuck, M. Farrell, L.A. Dennis, C. Dixon & M. Fisher (2019): Formal
specification and verification of autonomous robotic systems: A survey. ACM
Computing Surveys 52(5), doi:10.1145/3342355.

5. Matthew O’Brien, Ronald C. Arkin, Dagan Harrington, Damian Lyons & Shu Jiang
(2014): Automatic Verification of Autonomous Robot Missions. In: Simulation,
Modeling, and Programming for Autonomous Robots, Cham, pp. 462-473.

[un

See https://www.andreipopescu.uk/litrev.pdf for a detailed literature review,
including the connection with major verification projects such as those pursued at
the RoboStar® center (https://robostar.cs.york.ac.uk).

