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Abstract. The interactive theorem prover Isabelle/HOL is based on the well un-
derstood Higher-Order Logic (HOL), which is widely believed to be consistent
(and provably consistent in set theory by a standard semantic argument). How-
ever, Isabelle/HOL brings its own personal touch to HOL: overloaded constant
definitions, used to achieve Haskell-like type classes in the user space. These fea-
tures are a delight for the users, but unfortunately are not easy to get right as an
extension of HOL—they have a history of inconsistent behavior. It has been an
open question under which criteria overloaded constant definitions and type defi-
nitions can be combined together while still guaranteeing consistency. This paper
presents a solution to this problem: non-overlapping definitions and termination
of the definition-dependency relation (tracked not only through constants but also
through types) ensures relative consistency of Isabelle/HOL.

1 Introduction

Polymorphic HOL, more precisely, Classic Higher-Order Logic with Infinity, Hilbert
Choice and Rank-1 Polymorphism, endowed with a mechanism for constant and type
definitions, was proposed at the end of the eighties as a logic for interactive theorem
provers by Mike Gordon, who also implemented the seminal HOL theorem prover [13].
This system has produced many successors and emulators known under the umbrella
term “HOL-based provers” (e.g., [2,27,15,6,4]), launching a very successful paradigm
in interactive theorem proving.

A main strength of HOL-based provers is a sweet spot in expressiveness versus
complexity: HOL on the one hand is sufficient for most mainstream mathematics and
computer science applications, and on the other is a well-understood logic. In particu-
lar, the consistency of HOL has a standard semantic argument, comprehensible to any
science graduate: one interprets its types as sets, in particular the function types as sets
of functions, and the terms as elements of these sets, in a natural way; the rules of the
logic are easily seen to hold in this model. The definitional mechanism has two flavors:

– New constants c are introduced by equations c ≡ t, where t is a closed term not
containing c

– New types τ are introduced by “typedef” equations τ ≡ t, where t : σ⇒ bool is
a predicate on an existing type σ (not containing τ anywhere in the types of its
subterms)—intuitively, the type τ is carved out as the t-defined subset of σ

Again, this mechanism is manifestly consistent by an immediate semantic argument
[30]; alternatively, its consistency can be established by regarding definitions as mere
abbreviations (which here are non-cyclic by construction).



Polymorphic HOL with Ad Hoc Overloading Isabelle/HOL [27,26] adds its personal
touch to the aforementioned sweet spot: it extends polymorphic HOL with a mechanism
for (ad hoc) overloading. As an example, consider the following Nominal-style [3] def-
initions, where prm is the type of finite-support bijections on an infinite type atom, and
where we write apply pi a for the application of a bijection pi to an atom a:

Example 1 consts perm : prm ⇒ α ⇒ α
defs perm_atom: perm pi (a : atom) ≡ apply pi a
defs perm_nat: perm pi (n : nat) ≡ n
defs perm_list: perm pi (xs : α list) ≡ map (perm pi) xs

Above, the constant perm is declared using the keyword “consts”—its intended be-
havior is the application of a permutation to all atoms contained in an element of a
type α. Then, using the keyword “defs”, several overloaded definitions of perm are
performed for different instances of α. For atoms, perm applies the permutation; for
numbers (which don’t have atoms), perm is the identity function; for α list, the instance
of perm is defined in terms of the instance for the component α. All these definitions
are non-overlapping and their type-based recursion is terminating, hence Isabelle is fine
with them.

Inconsistency Of course, one may not be able to specify all the relevant instances
immediately after declaring a constant like perm—at a later point, a user may define
their own atom-container type, such as3

datatype myTree = Atom atom | LNode atom list | FNode nat => atom

and instantiate perm to this type. (In fact, the Nominal package automates instantiations
for user-requested datatypes, including terms with bindings.) To support such delayed
instantiations, which are also crucial for the implementation of type classes [34,14],
Isabelle/HOL allows intermixing definitions of instances of an overloaded constant with
definitions of other constants and types. Unfortunately, the improper management of the
intermixture leads to inconsistency: Isabelle/HOL accepts the following definitions4

Example 2 consts c : α
typedef T = {True, c} by blast
defs c_bool_def: c:bool ≡ ¬ (∀(x:T) y. x = y)

which immediately yield a proof of False:

lemma L: (∀(x:T) y. x = y) ↔ c
using Rep_T Rep_T_inject Abs_T_inject by (cases c:bool) force+

theorem False
using L unfolding c_bool_def by auto

3 In Isabelle/HOL, as in any HOL-based prover, the “datatype” command is not primitive, but
is compiled into “typedef.”

4 This example works in Isabelle2014; our correction patch [1] based on the results of this paper
and in its predecessor [20] is being evaluated at the Isabelle headquarters.
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The inconsistency argument takes advantage of the circularity T  cbool  T in
the dependency relation introduced by the definitions: one first defines T to contain
only one element just in case cbool is True, and then defines c to beTrue just in case T
contains more than one element.

Our Contribution In this paper, we provide the following, in the context of polymor-
phic HOL extended with ad hoc overloading (§3):

– A definitional dependency relation that factors in both constant and type definitions
in a sensible fashion (§4.1)

– A proof of consistency of any set of constant and type definitions whose depen-
dency relation satisfies reasonable conditions, which accept Example 1 and reject
Example 2 (§4)

– A new semantics for polymorphic HOL (§4.4) that guides both our definition of the
dependency relation and our proof of consistency

We hope that our work settles the consistency problem for Isabelle/HOL’s extension
of HOL, while showing that the mechanisms of this logic admit a natural and well-
understandable semantics. We start with a discussion of related work, including pre-
vious attempts to establish consistency (§2). Later we also show how this work fits
together with previous work by the first author (§5).

2 Related Work

Type Classes and Overloading Type classes were introduced in Haskell by Wadler
and Blott [33]—they allow programmers to write functions that operate generically on
types endowed with operations. For example, assuming a type α which is a semigroup
(i.e., comes with a binary associative operation +), one can write a program that com-
putes the sum of all the elements in an α-list. Then the program can be run on any con-
crete type T that replaces α provided T has this binary operation +. Prover-powered
type classes were introduced by Nipkow and Snelting [28] in Isabelle/HOL and by
Sozeau and Oury [32] in Coq—they additionally feature verifiability of the type-class
conditions upon instantiation: a type T is accepted as a member of the semigroup class
only if associativity can be proved for its + operation.

Whereas Coq implements type classes directly by virtue of its powerful type system,
Isabelle/HOL relies on arbitrary ad hoc overloading: to introduce the semigroup class,
the system declares a “global” constant + : α⇒ α⇒ α and defines the associativity
predicate; then different instance types T are registered after defining the corresponding
overloaded operation + : T ⇒ T ⇒ T and verifying the condition. Our current paper
focuses not on the Isabelle/HOL type classes, but on the consistency of the mechanism
of ad hoc overloading which makes them possible.

Previous Consistency Attempts The settling of this consistency problem has been
previously attempted by Wenzel [34] and Obua [29]. In 1997, Wenzel defined a notion
of safe theory extension and showed that overloading conforms to this notion. But he did
not consider type definitions and worked with a simplified version of the system where
all overloadings for a constant c are provided at once. Years later, when Obua took over
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the problem, he found that the overloadings were almost completely unchecked—the
following trivial inconsistency was accepted by Isabelle2005:

Example 3 consts c : α ⇒ bool
defs c (x : α list × α) ≡ c (snd x # fst x)
defs c (x : α list) ≡ ¬ c (tl x, hd x)

lemma c [x] = ¬ c([], x) = ¬ c[x]

Obua noticed that the rewrite system produced by the definitions has to terminate
to avoid inconsistency, and implemented a private extension based on a termination
checker. He did consider intermixing overloaded constant definitions and type defini-
tions but his syntactic proof sketch misses out inconsistency through type definitions.

Triggered by Obua’s observations, Wenzel implemented a simpler and more struc-
tural solution based on work of Haftmann, Obua and Urban: fewer overloadings are
accepted in order to make the consistency/termination check decidable (which Obua’s
original check is not). Wenzel’s solution has been part of the kernel since Isabelle2007
without any important changes—parts of this solution (which still misses out depen-
dencies through types) are described by Haftmann and Wenzel [14].

In 2014, we discovered that the dependencies through types are not covered (Exam-
ple 2), as well as an unrelated issue in the termination checker that led to an inconsis-
tency even without exploiting types. Kunčar [20] amended the latter issue by presenting
a modified version of the termination checker and proving its correctness. The proof is
general enough to cover termination of the definition dependency relation through types
as well. Our current paper complements this result by showing that termination leads to
consistency.

Inconsistency Club Inconsistency problems arise quite frequently with provers that
step outside the safety of a simple and well-understood logic kernel. The various proofs
of False in the early PVS system [31] are folklore. Coq’s [9] current stable version5

is inconsistent in the presence of Propositional Extensionality; this problem stood un-
detected by the Coq users and developers for 17 years; interestingly, just like the Is-
abelle/HOL problem under scrutiny, it is due to an error in the termination checker [12].
Agda [11] suffers from similar problems [23]. The recent Dafny prover [21] proposes
an innovative combination of recursion and corecursion whose initial version turned out
to be inconsistent [10].

Of course, such “dangerous” experiments are often motivated by better support for
the users’ formal developments. The Isabelle/HOL type class experiment was prac-
tically successful: substantial developments such as the Nominal [3,18] and HOLCF
[24] packages and Isabelle’s mathematical analysis library [17] rely heavily on type
classes. One of Isabelle’s power users writes [22]: “Thanks to type classes and refine-
ment during code generation, our light-weight framework is flexible, extensible, and
easy to use.”

5 Namely, Coq 8.4pl5; the inconsistency is fixed in Coq 8.5 beta.
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Consistency Club Members of this select club try to avoid inconsistencies by impres-
sive efforts of proving soundness of logics and provers by means of interactive theorem
provers themselves. Harisson’s pioneering work [16] uses HOL Light to give semantic
proofs of soundness of the HOL logic without definitional mechanisms, in two flavors:
either after removing the infinity axiom from the object HOL logic, or after adding a
“universe” axiom to HOL Light; a proof that the OCaml implementation of the core of
HOL Light correctly implements this logic is also included. Kumar et al. [19] formalize
in HOL4 the semantics and the soundness proof of HOL, with its definitional principles
included; from this formalization, they extract a verified implementation of a HOL the-
orem prover in CakeML, an ML-like language featuring a verified compiler. None of
the above verified systems factor in ad-hoc overloading, the starting point of our work.

Outside the HOL-based prover family, there are formalizations of Milawa [25],
Nuprl [5] and fragments of Coq [7,8].

3 Polymorphic HOL with Ad Hoc Overloading

Next we present syntactic aspects of our logic of interest (syntax, deduction and defini-
tions) and formulate its consistency problem.

3.1 Syntax

In what follows, by “countable” we mean “either finite or countably infinite.” All through-
out this section, we fix the following:

– A countably infinite set TVar, of type variables, ranged over by α, β
– A countably infinite set Var, of (term) variables, ranged over by x, y, z
– A countable set K of symbols, ranged over by k, called type constructors, contain-

ing three special symbols: “bool”, “ind” and “⇒” (aimed at representing the type
of booleans, an infinite type and the function type constructor, respectively)

We also fix a function arOf : K→ N associating an arity to each type constructor, such
that arOf(bool) = arOf(ind) = 0 and arOf(⇒) = 2. We define the set Type, ranged over
by σ, τ, of types, inductively as follows:

– TVar ⊆ Type
– (σ1, . . . , σn)k ∈ Type if σ1, . . . , σn ∈ Type and k ∈ K such that arOf(k) = n

Thus, we use postfix notation for the application of an n-ary type constructor k to the
types σ1, . . . , σn. If n = 1, instead of (σ)k we write σ k (e.g., σ list).

A typed variable is a pair of a variable x and a type σ, written xσ. Given T ⊆ Type,
we write VarT for the set of typed variables xσ with σ∈ T . Finally, we fix the following:

– A countable set Const, ranged over by c, of symbols called constants, containing
five special symbols: “→”, “=”, “some” “zero”, “suc” (aimed at representing log-
ical implication, equality, Hilbert choice of “some” element from a type, zero and
successor, respectively)

– A function tpOf : Const→ Type associating a type to every constant, such that:
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tpOf(→) = bool⇒ bool⇒ bool
tpOf(=) = α⇒ α⇒ bool
tpOf(some) = (α⇒ bool)⇒ α

tpOf(zero) = ind
tpOf(suc) = ind⇒ ind

We define the type variables of a type, TV : Type→P(TVar), as expected. A type
σ is called ground if TV(σ) = /0. We let GType be the set of ground types.

A type substitution is a function ρ : TVar→ Type; we let TSubst denote the set
of type substitutions. Each ρ ∈ TSubst extends to a homonymous function ρ : Type→
Type by defining ρ((σ1, . . . , σn)k) = (ρ(σ1), . . . , ρ(σn))k. We let GTSubst be the set
of all ground type substitutions θ : TVar→GType, which again extend to homonymous
functions θ : Type→ GType.

We say that σ is an instance of τ, written σ ≤ τ, if there exists ρ ∈ TSubst such
that ρ(τ) = σ. Two types σ and τ are called orthogonal, written σ # τ, if they have no
common instance.

Given c ∈ Const such that σ ≤ tpOf(c), we call the pair (c, σ), written cσ, an
instance of c. A constant instance is therefore any such pair cσ. We let CInst be the set
of all constant instances, and GCInst the set of constant instances whose type is ground.
We extend the notions of being an instance (≤) and being orthogonal ( # ) from types
to constant instances, as follows:

cτ ≤ dσ iff c = d and τ≤ σ cτ # dσ iff c 6= d or τ # σ

We also define tpOf for constant instances by tpOf(cσ) = σ.
The tuple (K, arOf,C, tpOf), which will be fixed in what follows, is called a sig-

nature. This signature’s pre-terms, ranged over by s, t, are defined by the grammar:

t = xσ | cσ | t1 t2 | λxσ. t

Thus, a pre-term is either a typed variable, or a constant instance, or an application, or
an abstraction. As usual, we identify pre-terms modulo alpha-equivalence.

Typing of pre-terms is defined in the expected way (by assigning the most general
type possible); a term is a well-typed pre-term, and Term denotes the set of terms. Given
t ∈ Term, we write tpOf(t) for its (uniquely determined, most general) type and FV(t)
for the set of its free (term) variables. We call t closed if FV(t) = /0.

We let TV(t) denote the set of type variables occurring in t. A term t is called
ground if TV(t) = /0. Thus, closedness refers to the absence of free (term) variables in
a term, whereas groundness refers to the absence of type variables in a type or a term.
Note that, for a term, being ground is a stronger condition than having a ground type:
(λxα. cbool) xα has the ground type bool, but is not ground.

We can apply a type substitution ρ to a term t, written ρ(t), by applying ρ to all the
type variables occurring in t; and similarly for ground type substitutions θ; note that θ(t)
is always a ground term.

A formula is a term of type bool. We let Fmla, ranged over by ϕ, denote the set
of formulas. The formula connectives and quantifiers are defined in the standard way,
starting from the implication and equality primitives.

When writing concrete terms or formulas, we often omit indicating the type in oc-
currences of bound variables—e.g., we may write λxα. x instead of λxα. xα.
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3.2 Built-Ins and Non-Built-Ins

The distinction between built-in and non-built-in types and constants will be important
for us, since we will employ a slightly non-standard semantics only for the latter.

A built-in type is any type of the form bool, ind, or σ1 ⇒ σ2 for σ1, σ2 ∈ Type.
We let Type• denote the set of types that are not built-in. Note that a non-built-in type
can have a built-in type as a subtype, and vice versa; e.g., if list is a type constructor,
then bool list and (α⇒ β) list are non-built-in types, whereas α⇒ β list is a built-
in type. Also, note that we consider type variables to be non-built-in types. We let
GType• = GType∩Type• denote the set of ground non-built-in types.

Given a type σ, we define types•(σ), the set of non-built-in types of σ, as follows:

types•(α) = {α}
types•(bool) = types•(ind) = /0
types•((σ1, . . . , σn) k) = {(σ1, . . . , σn) k}, if k is different from⇒
types•(σ1⇒ σ2) = types•(σ1) ∪ types•(σ2)

Thus, types•(σ) is the smallest set of non-built-in types that can produce σ by repeated
application of the built-in type constructors. E.g., if the type constructors prm (0-ary)
and list (unary) are in the signature and if σ is (bool⇒ α list)⇒ prm⇒ (bool⇒
ind) list, then types•(σ) has three elements: α list, prm and (bool⇒ ind) list.

A built-in constant is a constant of the form →, =, some, zero or suc. We let
CInst• be the set of constant instances that are not instances of built-in constants, and
GCInst• ⊆ CInst• be its subset of ground constants.

As a general notation rule: the prefix “G” indicates ground items, whereas the su-
perscript • indicates non-built-in items, where an item can be either a type or a constant
instance. In our semantics (§4.4), we will stick to the standard interpretation of built-in
items, whereas for non-built-in items we will allow an interpretation looser than cus-
tomary. The standardness of the bool, ind and function-type interpretation will allow
us to always automatically extend the interpretation of a set of non-built-in types to the
interpretation of its built-in closure.

Given a term t, we let consts•(t) ⊆ CInst• be the set of all non-built-in constant
instances occurring in t and types•(t) ⊆ Type• be the set of all non-built-in types that
compose the types of non-built-in constants and (free or bound) variables occurring in
t. Note that the types• operator is overloaded for types and terms.

consts•(xσ) = /0 types•(xσ) = types•(σ)

consts•(cσ) =
{
{cσ} if cσ ∈ CInst•

/0 otherwise types•(cσ) = types•(σ)

consts•(t1 t2) = consts•(t1)∪ consts•(t2) types•(t1 t2) = types•(t1)∪ types•(t2)
consts•(λxσ. t) = consts•(t) types•(λxσ. t) = types•(σ)∪ types•(t)

Note that the consts• and types• operators commute with ground type substitutions (and
similarly with type substitutions, of course):

Lemma 4. (1) consts•(θ(t)) = {cθ(σ) | cσ ∈ consts•(t)}
(2) types•(θ(t)) = {θ(σ) | σ ∈ types•(t)}
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3.3 Deduction

If D is a finite set of closed formulas, a.k.a. a theory, and ϕ is a closed formula, we
write D ` ϕ for the deducibility of ϕ from D according to the standard deduction rules
of polymorphic HOL [13,27].6 A theory D is called consistent if there exists ϕ such that
D 6` ϕ (or equivalently if D 6` False, where the formula False is defined in a standard
way from the built-in constants).

3.4 Definitional Theories

We are interested in the consistency of theories arising from constant-instance and type
definitions, which we call definitional theories.

Given cσ ∈ CInst• and a closed term t ∈ Termσ, we let cσ ≡ t denote the formula
cσ = t. We call cσ ≡ t a constant-instance definition provided TV(t) ⊆ TV(cσ) (i.e.,
TV(t)⊆ TV(σ)).

Given the types τ ∈ Type• and σ ∈ Type and the closed term t whose type is σ⇒
bool, we let τ≡ t denote the formula

(∃xσ. t x)→
∃repτ⇒σ. ∃absσ⇒τ.
(∀xτ. t (rep x)) ∧ (∀xτ. abs (rep x) = x) ∧ (∀yσ. t y→ rep (abs y) = y).

We call τ≡ t a type definition, provided TV(t)⊆ TV(τ) (which also implies TV(σ)⊆
TV(τ)).

Note that we defined τ≡ t not to mean:

(*): The type τ is isomorphic, via abs and rep, to the subset of σ given by t

as customary in most HOL-based systems, but rather to mean:

If t gives a nonempty subset of σ, then (*) holds

Moreover, note that we do not require τ to have the form (α1, . . . , αn)k, as is currently
required in Isabelle/HOL and the other HOL provers, but, more generally, allow any
τ ∈ Type•. (To ensure consistency, we will also require that τ has no common instance
with the left-hand side of any other type definition.) This enables an interesting feature:
ad hoc overloading for type definitions. For example, given a unary type constructor
tree, we can have totally different definitions for nat tree, bool tree and α list tree.

In general, a definition will have the form u≡ t, where u is either a constant instance
or a type and t is a term (subject to the specific constraints of constant-instance and type
definitions). u and t are said to be the left-hand and right-hand sides of the definition. A
definitional theory is a finite set of definitions.

6 The deduction in polymorphic HOL takes place using open formulas in contexts. In addition,
Isabelle/HOL distinguishes between theory contexts and proof contexts. We ignore these as-
pects in our presentation here, since they do not affect our consistency argument.
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3.5 The Consistency Problem

An Isabelle/HOL development proceeds by:

1. declaring constants and types
2. defining constant instances and types
3. stating and proving theorems using the deduction rules of polymorphic HOL

Consequently, at any point in the development, one has:

1. a signature (K, arOf : K→ N, Const, tpOf : Const→ Type)
2. a definitional theory D
3. other proved theorems

In our abstract formulation of Isabelle/HOL’s logic, we do not represent explicitly point
3, namely the stored theorems that are not produced as a result of definitions, i.e., are
not in D. The reason is that, in Isabelle/HOL, the theorems in D are not influenced
by the others. Note that this is not the case of the other HOL provers, due to the type
definitions: there, τ ≡ t, with tpOf(t) = σ⇒ bool, is introduced in the unconditional
form (*), and only after the user has proved that t gives a nonempty subset (i.e., that
∃xσ. t x holds). Of course, Isabelle/HOL’s behavior converges with standard HOL be-
havior since the user is also required to prove nonemptiness, after which (*) is inferred
by the system—however, this last inference step is normal deduction, having nothing
to do with the definition itself. This very useful trick, due to Wenzel, cleanly separates
definitions from proofs. In summary, we only need to guarantee the consistency of D:

The Consistency Problem: Find a sufficient criterion for a definitional theory
D to be consistent (while allowing flexible overloading, as discussed in the
introduction).

4 Our Solution to the Consistency Problem

Assume for a moment we have a proper dependency relation between defined items,
where the defined items can be types or constant instances. Obviously, the closure of
this relation under type substitutions needs to terminate, otherwise inconsistency arises
immediately, as shown in Example 3. Moreover, it is clear that the left-hand sides of
the definitions need to be orthogonal: defining cα×ind⇒bool to be λxα×ind.False and
cind×α⇒bool to be λxind×α.True yields λxind×ind.False = cind×ind⇒bool = λxind×ind.True
and hence False = True.

It turns out that these necessary criteria are also sufficient for consistency. This was
also believed by Wenzel and Obua; what they were missing was a proper dependency
relation and a transparent argument for its consistency, which is what we provide next.

4.1 Definitional Dependency Relation

Given any binary relation R on Type• ∪CInst•, we write R+ for its transitive closure,
R∗ for its reflexive-transitive closure and R↓ for its (type-)substitutive closure, defined
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as follows: p R↓ q iff there exist p′, q′ and a type substitution ρ such that p = ρ(p′),
q = ρ(q′) and p′ R q′. We say that a relation R is terminating if there exists no sequence
(pi)i∈N such that pi R pi+1 for all i.

Let us fix a definitional theory D. We say D is orthogonal if for all distinct defini-
tions u≡ t and u′ ≡ t′ in D, we have one of the following cases:

– either one of {u, u′} is a type and the other is constant instance
– or both u and u′ are types and are orthogonal (u # u′)
– or both u and u′ are constant instances and are orthogonal (u # u′)

We define the binary relation on Type• ∪CInst• by setting u v iff one of the
following holds:

1. there exists a (constant-instance or type) definition in D of the form u≡ t such that
v ∈ consts•(t) ∪ types•(t)

2. there exists c ∈ Const• such that u = ctpOf(c) and v ∈ types•(tpOf(c))

We call the dependency relation (associated to D).
Thus, when defining an item u by means of t (as in u≡ t), we naturally record that u

depends on the constants and types appearing in t (clause 1); moreover, any constant c
should depend on its type (clause 2). But notice the bullets! We only record dependen-
cies on the non-built-in items, since intuitively the built-in items have a pre-determined
semantics which cannot be redefined or overloaded, and hence by themselves cannot
introduce inconsistencies. Moreover, we do not dig for dependencies under any non-
built-in type constructor—this can be seen from the definition of the types• operator
on types which yields a singleton whenever it meets a non-built-in type constructor;
the rationale for this is that a non-built-in type constructor has an “opaque” semantics
which does not expose the components (as does the function type constructor). These
intuitions will be made precise by our semantics in §4.4.

Consider the following example, where the definition of α k is omitted:

Example 5 consts c : α d : α
typedef α k = ...
defs c : ind k ⇒ bool ≡ (d : bool k k ⇒ ind k ⇒ bool) (d : bool k k)

We record that cind k⇒bool depends on the non-built-in constants dbool k k⇒ind k⇒bool and
dbool k k, and on the non-built-in types bool k k and ind k. We do not record any depen-
dency on the built-in types bool k k⇒ ind k⇒ bool, ind k⇒ bool or bool. Also, we do
not record any dependency on bool k, which can only be reached by digging under k in
bool k k.

4.2 The Consistency Theorem

We can now state our main result. We call a definitional theory D well-formed if it is
orthogonal and the substitutive closure of its dependency relation, ↓, is terminating.

Note that a well-formed definitional theory is allowed to contain definitions of two
different (but orthogonal) instances of the same constant—this ad-hoc overloading fa-
cility is a distinguishing feature of Isabelle/HOL among the HOL provers.
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Theorem 6 If D is well-formed, then D is consistent.

Previous attempts to prove consistency employed syntactic methods [34,29]. In-
stead, we will give a semantic proof:

1. We define a new semantics of Polymorphic HOL, suitable for overloading and for
which standard HOL deduction is sound (§4.4)

2. We prove that D has a model according to our semantics (§4.5)

Then 1 and 2 immediately imply consistency.

4.3 Inadequacy of the Standard Semantics of Polymorphic HOL

But why define a new semantics? Recall that our goal is to make sense of definitions as
in Example 1. In the standard (Pitts) semantics [30], one chooses a “universe” collection
of sets U closed under suitable set operations (function space, an infinite set, etc.) and
interprets:

1. the built-in type constructors and constants as their standard counterparts in U :
– [bool] and [ind] are some chosen two-element set and infinite set in U
– [⇒] : U → U → U takes two sets A1, A2 ∈ U to the set of functions A1→ A2
– [True] and [False] are the two distinct elements of [bool], etc.

2. the non-built-in type constructors similarly:
– a defined type prm or type constructor list as an element [prm] ∈ U or operator
[list] : U → U , produced according to their “typedef”

– a polymorphic constant such as perm : prm→ α→ α as a family [perm] ∈
∏A∈U [prm]→ A→ A

In standard polymorphic HOL, perm would be either completely unspecified, or com-
pletely defined in terms of previously existing constants—this has a faithful semantic
counterpart in U . But now how to represent the overloaded definitions of perm from
Example 1? In U , they would become:

[perm][atom] pi a = [apply] pi a
[perm][nat] pi n = n
[perm][list](A) pi xs = [map]A ([perm]A pi) xs

There are two problems with these semantic definitions. First, given B ∈ U , the value
of [perm]B varies depending on whether B has the form [atom], or [nat], or [list](A)
for some A ∈ U ; hence the interpretations of the type constructors need to be non-
overlapping—this is not guaranteed by the assumptions about U , so we would need
to perform some low-level set-theoretic tricks to achieve the desired property. Second,
even though the definitions are syntactically terminating, their semantic counterparts
may not be: unless we again delve into low-level tricks in set theory (based on the axiom
of foundation), it is not guaranteed that decomposing a set A0 as [list](A1), then A1 as
[list](A2), and so on (as prescribed by the third equation for [perm]) is a terminating
process.

Even worse, termination is in general a global property, possibly involving both
constants and type constructors, as shown in the following example where c and k are
mutually defined (so that a copy of ebool kn is in bool kn+1 iff n is even):
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Example 7 consts c : α ⇒ bool d : α e : α
typedef α k = {d:α} ∪ {e : α . c (d : α)}
c (x : α k) ≡ ¬ c (d : α)
c (x : bool) ≡ True

The above would require a set-theoretic setting where such fixpoint equations have solu-
tions; this is in principle possible, provided we tag the semantic equations with enough
syntactic annotations to guide the fixpoint construction. However, such a construction
seems excessive given the original intuitive justification: the definitions are “OK” be-
cause they do not overlap and they terminate. On the other hand, a purely syntactic
(proof-theoretic) argument also seems difficult due to the mixture of constant defini-
tions and (conditional) type definitions.

Therefore, we decide to go for a natural syntactic-semantic blend, which avoids
stunt performance in set theory: we do not semantically interpret the polymorphic
types, but only the ground types, thinking of the former as “macros” for families of
the latter. For example, α⇒ α list represents the family (τ⇒ τ list)τ∈GType. Conse-
quently, we think of the meaning of α⇒ α list not as ∏A∈U A→ [list](A), but rather as
∏τ∈GType[τ]→ [τ list]. Moreover, a polymorphic formula ϕ of type, say, (α⇒ α list)⇒
bool, will be considered true just in case all its ground instances of types (τ⇒ τ list)⇒
bool are true.

Another (small) departure from standard HOL semantics is motivated by our goal to
construct a model for a well-formed definitional theory. Whereas in standard semantics
one first interprets all type constructors and constants and only afterwards extends the
interpretation to terms, here we need to interpret some of the terms eagerly, before some
of the types and constants. Namely, given a definition u ≡ t, we interpret t before we
interpret u (according to t). This requires a straightforward refinement of the notion
of semantic interpretation: to interpret a term, we only need the interpretations for a
sufficient fragment of the signature containing all the items appearing in t.

4.4 Ground, Fragment-Localized Semantics for Polymorphic HOL

Recall that we have a fixed signature (K, arOf, Const, tpOf), that GType• is the set of
ground non-built-in types and GCInst• the set of ground non-built-in constant instances.

Given T ⊆ Type, we define Cl(T )⊆ Type, the built-in closure of T , inductively:

– T ∪{bool, ind} ⊆ Cl(T )
– σ1⇒ σ2 ∈ Cl(T ) if σ1 ∈ Cl(T ) and σ2 ∈ Cl(T )

I.e., Cl(T ) is the smallest set of types built from T by repeatedly applying built-in type
constructors.

A (signature) fragment is a pair (T,C) with T ⊆GType• and C ⊆GCInst• such that
σ ∈ Cl(T ) for all cσ ∈C.

Let F = (T,C) be a fragment. We write:

– TypeF, for the set of types generated by this fragment, namely Cl(T )
– TermF, for the set of terms that fall within this fragment, namely {t ∈ Term |

types•(t)⊆ T ∧ consts•(t)⊆C}
– FmlaF, for Fmla∩TermF

Lemma 8. The following hold:
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(1) TypeF ⊆ GType
(2) TermF ⊆ GTerm
(3) If t ∈ TermF , then tpOf(t) ∈ TypeF

(4) If t ∈ TermF , then FV(t)⊆ TermF

(5) If t ∈TermF , then each subterm of t is
also in TermF

(6) If t1, t2 ∈ TermF and xσ ∈ VarTypeF ,
then t1[t2/xσ] ∈ TermF

The above straightforward lemma shows that fragments F include only ground items
(points (1) and (2)) and are “autonomous” entities: the type of a term from F is also in
F (3), and similarly for the free (term) variables (4), subterms (5) and substituted terms
(6). This autonomy allows us to define semantic interpretations for fragments.

For the rest of this paper, we fix the following:

– a singleton set {∗}
– a two-element set {true, false}
– a global choice function, choice, that assigns to each nonempty set A an element

choice(a) ∈ A

Let F =(T,C) be a fragment. An F-interpretation is a pair I =(([τ])τ∈T , ([cτ])cτ∈C)
such that:

1. ([τ])τ∈T is a family such that [τ] is a non-empty set for all τ ∈ T .
We extend this to a family ([τ])τ∈Cl(T ) by interpreting the built-in type constructors
as expected:

[bool] = {true, false}
[ind] = N (the set of natural numbers)7

[σ⇒ τ] = [σ]→ [τ] (the set of functions from [σ] to [τ])
2. ([cτ])cτ∈C is a family such that [cτ] ∈ [τ] for all cτ ∈C

(Note that, in condition 2 above, [τ] refers to the extension described at point 1.)
Let GBIF be the set of ground built-in constant instances cτ with τ ∈ TypeF . We

extend the family ([cτ])cτ∈C to a family ([cτ])cτ∈C ∪ GBIF , by interpreting the built-in
constants as expected:

– [→bool⇒bool⇒bool] as the logical implication on {true, false}
– [=τ⇒τ⇒bool] as the equality predicate in [τ]→ [τ]→{true, false}
– [zeroind] as 0 and [sucind⇒ind] as the successor function for N
– [some(τ⇒bool)⇒τ] as the following function, where, for each f : [τ]→{true, false},

we let A f = {a ∈ [τ] | f (a) = true}:

[some(τ⇒bool)⇒τ]( f ) =
{

choice(A f ) if A f is non-empty
choice([τ]) otherwise

In summary, an interpretation I is a pair of families (([τ])τ∈T , ([cτ])cτ∈C), which in
fact gives rise to an extended pair of families (([τ])τ∈Cl(T ), ([cτ])cτ∈C ∪ GBIF ).

Now we are ready to interpret the terms in TermF according to I. A valuation
ξ : VarTypeF →Set is called I-compatible if ξ(xσ) ∈ [σ]I for each xσ ∈ VarGType. We
write CompI for the set of compatible valuations. For each t ∈ TermF , we define a
function [t] : CompI → [tpOf(t)] recursively over terms as expected:

7 Any infinite (not necessarily countable) set would do here; we only choose N for simplicity.
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[xσ](ξ) = ξ(xσ)
[cσ](ξ) = [cσ]
[t1 t2](ξ) = [t1](ξ) ([t2](ξ))

[λxσ. t](ξ) is the function sending
each a ∈ [σ] to [t](ξ(xσ← a)), where
ξ(xσ← a) is ξ updated with a at xσ

(Note that this recursive definition is correct thanks to Lemma 8.(5).)
If t is a closed term, then [t] does not truly depend on ξ, and hence we can assume

[t] ∈ [tpOf(t)]. In what follows, we only care about the interpretation of closed terms.
The above concepts are parameterized by a fragment F and an F-interpretation I.

If I or F are not clear from the context, we may write, e.g., [t]I or [t]F,I . If ϕ ∈ FmlaF ,
we say that I is a model of ϕ, written I |= ϕ, if [ϕ]I = true.

Note that the pairs (F, I) are naturally ordered: Given fragments F1 = (T1,C1)
and F2 = (T2,C2), F1-interpretation I1 and F2-interpretation I2, we define (F1, I1)≤
(F2, I2) to mean T1 ⊆ T2, C1 ⊆C2 and [u]I1 = [u]I2 for all u ∈ T1∪C1.

Lemma 9. If (F1, I1)≤ (F2, I2), then the following hold:
(1) TypeF1 ⊆ TypeF2

(2) TermF1 ⊆ TermF2
(3) [τ]F1,I1 = [τ]F2,I2 for all τ ∈ TypeF1

(4) [t]F1,I1 = [t]F2,I2 for all t ∈ TermF1

The total fragment > = (GType•, GCInst•) is the top element in this order. Note
that Type> = GType and Term> = GTerm.

So far, I |= ϕ, the notion of I being a model of ϕ, was only defined for formulas ϕ
that belong to TermF , in particular, that are ground formulas. As promised, we extend
this to polymorphic formulas by quantifying universally over all ground type substitu-
tions. We only care about such an extension for the total fragment: Given a polymorphic
formula ϕ and a>-interpretation I, we say I is a model of ϕ, written I |= ϕ, if I |= θ(ϕ)
for all ground type substitutions θ. This extends to sets E of (polymorphic) formulas:
I |= E is defined as I |= ϕ for all ϕ ∈ E.

Theorem 10 (Soundness) Let E be a set of formulas that has a total-fragment model,
i.e., there exists a >-interpretation I such that I |= E. Then E is consistent.

Proof. It is routine to verify that the deduction rules for polymorphic HOL are sound
w.r.t. our ground semantics. ut

4.5 The Model Construction

The only missing piece from the proof of consistency is the following:

Theorem 11 Assume D is a well-formed definitional theory. Then it has a total-fragment
model, i.e., there exists a >-interpretation I such that I |= D.

Proof. For each u ∈ GType• ∪GCInst•, we define [u] by well-founded recursion on
 ↓+, the transitive closure of  ↓; indeed, the latter is a terminating (well-founded)
relation by the well-formedness of D, hence the former is also terminating.

We assume [v] has been defined for all v ∈ GType• ∪GCInst• such that u ↓+ v.
In order to define [u], we first need some terminology: We say that a definition w ≡ s
matches u if there exists a type substitution θ with u = θ(w). We distinguish the cases:

1. There exists no definition in D that matches u. Here we have two subcases:
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– u ∈ GType•. Then we define [u] = {∗}.
– u ∈ GCInst•. Say u has the form cσ. Then u ↓ σ, and hence [σ] is defined;

we define [u] = choice([σ]).

2. There exists a definition w≡ s in D that matches u. Then let θ be such that u= θ(w),
and let t = θ(s). Let Vu = {v | u ↓+ v}, Tu = Vu ∩Type and Cu = Vu ∩CInst. It
follows from the definition of that Fu = (Tu,Cu) is a fragment; moreover, from
the definition of and Lemma 4, we obtain that types•(t)⊆ Tu and consts•(t)⊆
Cu, which implies t ∈ TermFu ; hence we can speak of the value [t]Fu,Iu obtained
from the Fu-interpretation Iu = (([v])v∈Tu , ([v])v∈Cu). We have two subcases:

– u ∈ GCInst•. Then we define [u] = [t]Fu,Iu .
– u∈GType•. Then the type of t has the formσ⇒ bool; and sinceσ∈ types•(t)⊆

TypeFu , it follows that [σ]Fu,Iu is also defined. We have two subsubcases:
• [∃xσ. t x] = false. Then we define [u] = {∗}.
• [∃xσ. t x] = true. Then we define [u] = {a ∈ [σ]Fu,Iu | [t](a) = true}.

Having defined the >-interpretation I = (([u])u∈GType• , ([u])u∈GCInst•), it remains
to show that I |= D. To this end, let w≡ s be in D and let θ′ be a ground type substitution.
We need to show I |= θ′(w≡ s), i.e., I |= θ′(w)≡ θ′(s).

Let u = θ′(w); then u matches w≡ s, and by orthogonality this is the only definition
in D that it matches. So the definition of [u] proceeds with case 2 above, using w≡ s—
let θ be the ground type substitution considered there. Since θ′(w) = θ(w), it follows
that θ′ and θ coincide on the type variables of w, and hence on the type variables of
s (because, in any definition, the type variables of the right-hand side are included in
those of the left-hand side); hence θ′(s) = θ(s).

Now the desired fact follows from the definition of I, by a case analysis matching
the subcases of the above case 2. (Note that the definition operates with [t]Fu,Iu , whereas
we need to prove the fact for [t]>,I ; however, since (Fu, Iu)≤ (>, I), by Lemma 9 the
two values coincide; and similarly for [σ]Fu,Iu vs. [σ]>,I .) ut

5 Deciding Well-Formedness

We proved that every well-formed theory is consistent. From the implementation per-
spective, we can ask ourselves how difficult it is to check that the given theory is well-
formed. We can check that D is definitional and orthogonal by simple polynomial al-
gorithms. On the other hand, Obua [29] showed that a dependency relation generated
by overloaded definitions can encode the Post correspondence problem and therefore
termination of such a relation is not even a semi-decidable problem.

Kunčar [20] takes the following approach: Let us impose a syntactic restriction,
called compositionality, on accepted overloaded definitions which makes the termina-
tion of the dependency relation decidable while still permitting all use cases of over-
loading in Isabelle. Namely, let   be the substitutive and transitive closure of the
dependency relation (which is in fact equal to ↓+). Then D is called composable
if for all u, u′ that are left-hand sides of some definitions from D and for all v such that
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u  v, it holds that either u′ ≤ v, or v≤ u′, or u′ # v. Under composability, termination
of   is equivalent to acyclicity of , which is a decidable condition.8

Theorem 12 The property of D of being composable and well-formed is decidable.

Proof. The above-mentioned paper [20] presents a quadratic algorithm (in the size of
 ), CHECK, that checks that D is definitional, orthogonal and composable, and that   
terminates.9 Notice that   = ↓+ terminates iff ↓ terminates. Thus, CHECK decides
whether D is composable and well-formed. ut

For efficiency reasons, we optimize the size of the relation that the quadratic al-
gorithm works with. Let  1 be the relation defined like  , but only retaining clause
1 in its definition. Since  ↓ is terminating iff  ↓1 is terminating, it suffices to check
termination of the latter.

6 Conclusion

We have provided a solution to the consistency problem for Isabelle/HOL’s logic, namely,
polymorphic HOL with ad hoc overloading. Consistency is a crucial, but rather weak
property—a suitable notion of conservativeness (perhaps in the style of Wenzel [34], but
covering type definitions as well) is left as future work. Independently of Isabelle/HOL,
our results show that Gordon-style type definitions and ad hoc overloading can be
soundly combined and naturally interpreted semantically.
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for inspiring discussions and the anonymous referees for many useful comments. This
paper was partially supported by the DFG project Security Type Systems and Deduction
(grant Ni 491/13-3) as part of the program Reliably Secure Software Systems (RS3,
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8 Composability reduces the search space when we are looking for the cycle—it tells us that
there exist three cases on how to extend a path (to possibly close a cycle): in two cases we
can still (easily) extend the path (v ≤ u′ or u′ ≤ v) and in one case we cannot (v # u′). The
fourth case (v and u′ have a non-trivial common instance; formally u′ 6≤ v and v 6≤ u′ and there
exists w such that w≤ u′, w≤ v), which complicates the extension of the path, is ruled out by
composability. More about composability can be found in the original paper.

9 The correctness proof is relatively general and works for any   : UΣ → UΣ → bool on a set
UΣ endowed with a certain structure—namely, three functions = : UΣ → UΣ → bool, App :
(Type→Type)→ UΣ → UΣ and size : UΣ →N, indicating how to compare for equality, type-
substitute and measure the elements of UΣ . In this paper, we set Σ = (K, arOf,C, tpOf) and
UΣ = Type•∪CInst•. The definition of =, App and size is then straightforward: two elements
of Type•∪CInst• are equal iff they are both constant instances and they are equal or they are
both types and they are equal; App ρ τ= ρ(τ) and App ρ cτ = cρ(τ); finally, size(τ) counts the
number of type constructors in τ and size(cτ) = size(τ).

16



References

1. http://www21.in.tum.de/~kuncar/documents/patch.html
2. The HOL4 Theorem Prover, http://hol.sourceforge.net/
3. , C.U.: Nominal Techniques in Isabelle/HOL. J. Autom. Reason. 40(4) (2008)
4. Adams, M.: Introducing HOL Zero (Extended Abstract). In: ICMS ’10. Springer (2010)
5. Anand, A., Rahli, V.: Towards a Formally Verified Proof Assistant. In: ITP ’14. Springer

(2014)
6. Arthan, R.D.: Some Mathematical Case Studies in ProofPower–HOL. In: TPHOLs 2004
7. Barras, B.: Coq en Coq. Tech. Rep. 3026, INRIA (1996)
8. Barras, B.: Sets in Coq, Coq in Sets. Journal of Formalized Reasoning 3(1) (2010)
9. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq’Art:

The Calculus of Inductive Constructions. Springer (2004)
10. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational Extensible Corecursion. ICFP ’15,

ACM (2015)
11. Bove, A., Dybjer, P., Norell, U.: A Brief Overview of Agda—A Functional Language with

Dependent Types. In: TPHOLs 2009
12. Dénès, M.: [Coq-Club] Propositional extensionality is inconsistent in Coq, archived at

https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
13. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press (1993)
14. Haftmann, F., Wenzel, M.: Constructive Type Classes in Isabelle. In: TYPES (2006)
15. Harrison, J.: HOL Light: A Tutorial Introduction. In: FMCAD ’96. Springer (1996)
16. Harrison, J.: Towards self-verification of HOL Light. In: IJCAR 2006. Springer (2006)
17. Hölzl, J., Immler, F., Huffman, B.: Type Classes and Filters for Mathematical Analysis in

Isabelle/HOL. In: ITP ’13
18. Huffman, B., Urban, C.: Proof Pearl: A New Foundation for Nominal Isabelle. In: ITP ’10
19. Kumar, R., Arthan, R., Myreen, M., Owens, S.: HOL with Definitions: Semantics, Sound-

ness, and a Verified Implementation. In: ITP ’14. Springer (2014)
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