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Literature Review

In this chapter we review the most essential software tools that we will be using in our work
(Section 1) and the some of the relevant research in the area (Section 2).

1 Tools and technical concepts

We are building a versatile framework for guaranteeing collision avoidance, which will make
use of a variety of tools and frameworks.

1.1 ROS

ROS (Robot Operating System) is a collection of libraries and tools for developing robot
software. Although ROS is not an operating system in the full sense of the word, it provides
a complete system of inter-process communication and support for low-level device control.
In ROS, communication takes place by creating nodes that represent single processes that are
acting with a great deal of autonomy. ROS also introduces an abstraction over the hardware
layer. Nodes communicate with each other by continuously broadcasting and listening for
messages of a specific type and subject. It provides a simulation environment and support
for data visualization, which translates into quick and efficient testing of new robots [10].

Thanks to its powerful abstraction features which make it easy to learn and use, ROS
has been widely deployed in academic research labs and government agencies as their robot
development platform. This helped building a large, active community of enthusiasts, which
is constantly developing new technologies and improving existing solutions by making new
packages available [7]. ROS has begun to migrate beyond academia , being increasingly used
in industry, where it is being deployed to control robots in everyday use in production or
other warehouse operations [6].

ROS will be our main platform on which we develop our domain specific language and
tools.

1.2 ROS-Industrial

ROS-Industrial [3] is a project that extends the ROS capabilities with software libraries
and hardware that are tailored to the needs of industry, and advanced manufacturing in
particular. Compared with those avilable for ROS, the ROS-industrial software responsible
for path/motion planning (industrial moveit) [2] are still in the experimental phase. As
part of verification case study at the AMRC, we will look into extending our tools with
ROS-industrial features, as suitable for the robotic devices involved in that case study.

i
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1.3 The Gazebo simulator

Gazebo is an advanced simulation for robots that can be freely reconfigured and expanded.
It is fully compatible with ROS. Simulation can be run from ROS, and its API can be used
to control robots in simulations, via sending to and receiving data from them [4].

This software allows performing realistic simulations of physics affecting objects inside the
virtual world. Robots can interact with the simulated environment. They can pick up and
push objects, roll and slide on the ground, and bump into obstacles. The virtual environment
can act on the robot too, using gravity. To make this possible, Gazebo uses multiple physics
engines such as Open Dynamics Engine (ODE), Bullet, Symbody, or DART.

It is possible to create Robots by models in Unified Robot Description Format (URDF)
and load them at runtime. In addition, it is possible to create simulation scenarios (worlds)
that modify the characteristics of contact with the ground, obstacles, and gravity values in
all three dimensions. Gazebo includes various plugs for adding sensors to a robot model and
simulating them, covering aspects such as odometry, contact force, laser sensors, and stereo
cameras. It also allows training of AI-based solutions.

Most individual functionalities introduced in the framework during our development
process will be intensively tested using Gazebo simulations.

1.4 The RVIZ visualisation tool

RVIZ [8] is a 3D visualization tool. It uses data from all kinds of sensors installed on the
robot, including be camera images, infrared distance measurements, sonar data. In addition,
information can also come from robot systems from all related ROS topics. RVIZ displays a
graphical representation of these values in real-time. It also enables the programming of the
robot model’s movements through the appropriate additional software [1].

This tool will be used extensively during the testing and software development for this
study because one of the functionalities responsible for virtual obstacles added to the map of
the surroundings in the navigation stack will only be visible through the robot’s navigation
system. One should interpret these objects in the same way as actual physical obstacles
from the surroundings. Therefore, RVIZ will replace the Gazebo simulation, which can only
display physical obstacles.

1.5 OpenCV computer vision library

OpenCV stands for Open Source Computer Vision [5]. It is an open-source cross-platform
library of functions used in image, video processing and real-time computer vision, incorporating
machine learning algorithms.

In our work, will be used to generate geometric figures according to strictly defined
parameters provided by the path finder mechanism for the robot and added to its navigation
map. In the later stages of our work, we will also use it to detect objects in the area mapped
out for the robot’s movement. This will provide the necessary feedback for the algorithm
responsible for the safety mechanism. and help set up a safe route.
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1.6 The Isabelle verifier

Isabelle is a general-purpose interactive theorem prover based on higher-order logic [42].
The implementation languages of Isabelle are Standard ML and Scala. It allows defining
mathematical models for software and hardware systems and formulating properties about
them, and proving these properties in a logical calculus using a combination of interactive
and automatic methods.

Isabelle will the backbone of part of our framework that is responsible for verification. It
will be connected with our programming language environment via a code generator.

2 Relevant Literature

The two pillars of our planned collision avoidance framework are a verification infrastructure
and a safe navigation infrastructure. Concerning the latter, we discuss relevant literature on
robot path planning (§2.1) and an architecture for safe navigation (§2.2). Concerning the
former, we discuss existing work on robot verification (§2.4). We also discuss the similarities
and differences between our work and the area of AI (task) planning (§2.3). We conclude
with a summary of what we regard to be the novel contributions of our work (§??).

2.1 Robot path planning

Obstacle avoidance methods for mobile robots have been the target of extensive research
as part of the broader area of path planning (also called motion planning,1 or trajectory
planning) [13, 20, 38, 47]. Latombe’s influential monograph [34] formulates the following
question as the fundamental question of path (motion) planning: “How can a robot decide
what motions to perform in order to achieve goal arrangements of physical objects?” [34].
A particular case of this problem is determining paths to navigate the physical space in
such a way that certain target positions are being reached, while avoiding given physical
obstacles. Formally, the robot has to navigate a configuration space, where the points in
the configuration characterize the spacial position of the robot, but also potentially other
characteristics such as velocity and acceleration. The basic version of the path planning
problem deals with positions only and ignores other aspects. Several approaches have been
proposed to address this problem, including:

• Roadmap [34] (the creation of a “roadmap” consisting of one-dimensional curves that
connect the obstacles’ edges through the free space of the configuration space, which
can guide the creation of paths)

• Cell Decomposition [34] (decomposing the configuration space into smaller navigation-
homogeneous regions and navigating along their adjacency graph)

• Potential Field [32] (endowing the obstacles and the target position with some rejection
and attraction potential whose overall resultant guides the navigation locally, as if
moving a particle through a potential field)

1While “path planning” and “motion planning” are often used as synonyms, they are sometimes
distinguished as follows: Path planning is concerned with constructing a path from a starting point to an
endpoint given a full, partial or dynamic map, whereas motion planning is concerned with determining the
set of actions needed for a robot in order follow the path.
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Several other approaches and refinements of the above approaches are surveyed in [38, 47].
One can roughly distinguish between global and local path planning. With global path
planning, one uses prior (total or partial) knowledge about the environment in which a robot
is about to move, which can allow the system to choose offline paths that match various
optimality criteria [15]. With local path planning, the robot analyses its direct surroundings
based on sensor readings while moving and can react by adjusting the path to changes
not taken into account when planning a global path, for example the change in position of
obstacles or other events in a dynamic environment [16]. For example, the first two approaches
mentioned above (Roadmap and Cell Decomposition) are best suited for global path planning,
assuming that a complete model of the robot’s environment is available. By contrast, the
Potential Field approach is fundamentally local, making the best decision under the available
“local field” influences. The Dynamic Window approach [24] (which has been the target of
some verification work, see Section 2.4) also takes a local view to path planning. It focuses
on the velocities available within a short time interval and making sure that the robot can
stop before hitting the closest obstacle; this is more appropriate than global approaches when
dealing with high speeds and fast obstacle avoidance. Path planning is a main component
of robot navigation, which additionally includes self-localization and map building, and map
interpretation.

In our work, we will not contribute new planning/navigation algorithms – but will rather
deploy state of the art algorithms to ensure safe navigation in a fairly controlled setting,
namely map-based navigation though “corridors” along trajectories that have already been
deemed fundamentally safe in the static verification stage (as we detail in Chapter ??). We
assume that the high-level planning (the “what”) has been handled by the robot program
designer, and then we verify that this planning is indeed collision free, more precisely, free
of what we call fundamental collisions; if we think of collaborative robots as threads in a
multi-threaded program, than the lack of fundamental collisions can be compared to race
freedom. Our novel contribution will consist in a global, map-based navigation scheme
through pre-computed collision-free paths whose construction is informed at the verification
stage (and delivered in the form of virtual corridors that are added to the robots’ maps, as
explained in Chapter ??).

Another classification of path planning methods (also in [38]) distinguishes between
mathematical-model based, bio-inspired, sampling based and docomposition based methods
for path planning. In our initial experiments, we chose a sampling based method, employing
the Rapidly Exploring Random Tree (RRT) algorithm [30, 31, 48, 14] for searching a path
in 2D. This is an efficient algorithm, although it is incomplete (like all sampling based
methods) and does not necessarily give an optimal solution w.r.t. distance—we are considering
employing an improvement, RRT∗ [14], which guarantees optimal solutions and gives better
results in 3D. However, our combined verification / safe navigation scheme is agnostic with
respect to the particular method that we deploy for path finding. We envision a framework
where different path planning algorithms can be deployed on a plug and play fashion, depending
on which one fits the particular problem; the interaction between path planning and verification
will proceed in exactly the same way.

Finally, other distinctions that are being made in the literature [38] are between (1)
centralized and decentralized, and (2) real-time versus offline (pre-computation based) methods
for robot management systems, and robot path planning in particular. The centralized
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methods are usually based on providing one central computing server, which is then responsible
for the operation of each individual robot based on the received data. Such systems have
top-down information about each robot, as well as its goals, starting position and surroundings.
Based on this knowledge, the algorithms can calculate collision-free paths for each robot. By
contrast, decentralized methods count on the decisions of the internal systems of each robot
separately, which in their operation do not know the goals and intentions of other robots in
their environment; no communication is required between robots to achieve the assigned goals.
In our work, the verification stage offers a centralized view that creates a more predictable
environment, where we then enable decentralized execution for the individual robots – so we
employ a hybrid between the centralized and decentralized methods for managing multi-robot
systems. Moreover, real-time aspects are largely abstracted away from our framework, and
the verification-informed calculations happen offline—at least before we move to factor in
humans in the framework.

2.2 Safe Navigation Architecture

Macek et al. [37] propose a safe navigation architecture that distinguishes between a Route
Planner for computing valid itineraries towards given goals, and a Partial Motion Planner for
ensuring the safe, obstacle avoiding navigation along the itineraries (where the obstacles can
be moving objects, pedestrians, other vehicles, etc.). While this architecture was primarily
designed for autonomous vehicles operating within urban roads, its ideas are more general.
The Route Planner component essentially corresponds to the high-level aspects (the “what”
in Chapter ??) of a robot behavior which we plan to verify, whereas the Partial Motion
Planner component corresponds to what we plan to handle via quasi-dynamic safe navigation
techniques (the “how” in Chapter ??). A distinguishing feature of the scenarios we plan to
cover in our work, which is not emphasized by this architecture, is the highly cooperative
nature of the tasks – which can make the Route Planner component non-trivial. For example,
a cooperative task at the factory floor will not be only about establishing some waypoints
that must be visited in succession – but may require some synchronization between different
robots; in addition, the sequence of waypoints to be visited by each individual robot may not
be entirely predetermined.

Macek et al.’s work is important also because it introduces some useful collision-safety
properties: Passive Safety and Passive Friendly Safety. Both properties refer to individual
vehicles (and not the entire set of participating vehicles), and are ways of expressing that,
should a collision occur, it will not be that vehicle’s “fault”. Passive Safety states this in
a weak form: A collision can only occur while the vehicle is not moving. Passive Friendly
Safety states a stronger (and more reasonable) property: Any collision is avoidable, i.e., it is
within the braking (stopping) capabilities of the other vehicles to avoid the collision. These
properties are of course not as strong as one that would guarantee overall collision freeness of
the entire traffic, but represents a sensible compromise – given the difficulty of the problem.
In our work, we will prove collision freeness of the entire system, which is feasible because of
the more predictable nature of the required tasks.
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2.3 AI Planning

Another area that has points of intersection with our work is AI (task) planning [29], which
deals with high-level planning and scheduling of tasks that must be achieved by robotic
systems. The planning problems are defined using formal languages such as STRIPS [23]
and PDDL [25]. These languages can describe objects, relations between them, and actions,
usually employing the formalism of first-order logic. A planning problem is defined by an
initial state of the world, the available actions for changing the state, some constraints
on the possible states, and the goal expressed as a condition on the end state. Solving a
planning problem means coming up with a sequence of actions that respect the constraints
and achieve the goal—dedicated systems called AI planners implement algorithms for tackling
these problems. The above classical planning problem also has temporal and probabilistic
extensions, which allow dealing with timing constraints and uncertainty.

Planning systems have been successfully integrated with robot software development
systems [19, 39]; in particular, ROSPlan [17] is such an integration for ROS. The way most
of these integrations work is by allowing the developer to associate concrete implementations
to high-level actions specified in languages such as PDDL.

While the planning problem is essentially a synthesis problem, our work focuses on a
verification and analysis problem. Our domain specific language has some similarities with
planning languages such as PDDL in that it focuses on high-level aspects of the robots’ actions
(in our case, specifically on actions that are relevant w.r.t. collision) and abstracts away
the particular details on how the actions are achieved. However, our language is different
from a planning language in that it is imperative rather than declarative—which allows
the programmer to indicate the desired sequence of actions (modulo some nondeterminism
brought by concurrency). In other words, we do not tackle the (high-level) planning problem,
but assume that this has already been resolved. This having been said, our formal bridge
between ROS and Isabelle could be in the future combined with an embedding of PDDL in
Isabelle to integrate the planning step as well in the certification chain.

2.4 Verification of robotic systems

The general area of robotic system safety assurance and verification is a large and rapidly
growing area. Important subareas include the verification of autonomous robotic systems
[21, 36] and of industrial collaborative robots [22, 26] using methods such as theorem proving,
model checking and safety controller synthesis and monitoring. The employed formal models
include timed automata [28] and process algebras [43]. Our work will mostly apply to
robotic systems that are involved in pre-determined and largely pre-scripted collaborative
tasks (where the “script”, the robot program, is responsible for avoiding what we will call
“fundamental” collision hazards), but still have a certain degree of autonomy (which will be
used in avoiding what we will call “incidental” collision hazards).

Below we highlight some of the verification work that is closer to the work we plan here
– either by the target or the method of verification.

Verification using theorem provers / proof assistants Theorem provers offer one of
the highest forms of certification, since they produce formal proofs that certain desirable
properties are true. However, there has been little work in theorem-prover-based verification
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of robotic systems. Täubig et al. [46] and Mitsch et al. [40] formally prove the correctness of
various aspects of the Dynamic Window algorithm [24]. Täubig et al. use the Isabelle/HOL
prover combined with some paper proofs to verify that the C implementation of the algorithm
meets its specification: a Passive-Safety-like property. By contrast, Mitsch et al. do not prove
correct an implementation, but a more high-level description of the algorithm; on the other
hand, they address not only the discrete digital part, but also model the continuous behavior
of the systems – using the hybrid theorem prover KeYmaera based on Differential Dynamic
Logic; they formalize and prove both Passive Safety and Passive Friendly Safety. Liming et
al. perform the formal verification of a two-arm cooperative task [35] in the HOL4 theorem
prover [45]. Our work will provide a systematic solution for supporting collision-freeness
verification efforts on a larger scale. Our approach will be to abstract away as much as
possible from the technical knowledge about the specifics of the robots before verification
time, so that verification can proceed at a purely discrete level. For example, the verification
stage will count on the pre-computation of some upper bounds on the space taken by a
robot to perform certain tasks at certain locations, so that verification would have to make
sure the over-approximated space does not overlap with the space taken by other robots.
Admittedly, our approach trades some precision and verification coverage for feasability and
automation (in that we will not verify these domain-specific pre-computations) and restricts
the application scope to robotic tasks where these details can be abstracted away.

Verification of collaborative robots Previous work dealt with the verification of collaborative
robots forming swarms (where all robots have identical behavior and are typically large
in number) [44] or teams (where different robots may have distinct behaviors) [33]. The
safety of human-robot collaboration has been addressed in the CSI:Cobot project led by
the Universities of Sheffield and York – focusing specifically on safety controller synthesis
[26, 22, 26, 27]. Part of this work has been performed within a digital twin framework [22],
which facilitates the fine control over safety monitoring mechanisms. Our work will take
place in a less sophisticated framework based on ROS, but the techniques we develop will be
potentially applicable to that framework as well. We have initially investigated implementing
our verification infrastructure on top of the CSI digital twin framework, but in the end we
chose ROS due to the higher simplicity and more comprehensive documentation. However,
the CSI framework will inspire our work when we will move to factor in humans in our collision
avoidance framework; in particular, their approach of employing safety modes to switch to
safer activities depending on whether a human is present in the work area can be incorporated
into our ROS-based domain-specific language by distinguishing between different types of
local activities. Another commonality between the CSI:Cobot line of work and ours is the
focus on examples and case studies from manufacturing. It would be interesting to see how
our framework can be deployed to some of their case studies, to combine the human safety
guarantees with general-purpose collision-freeness guarantees.

Frameworks for verifiable robotic software BIP (Behavior Interaction Priority) [11] is
a framework for the compositional modeling of real-time software, employing a finite state
machine formalism. It has been integrated [9] with the GenoM robot software architecture
to synthesize robot control software that is correct by construction, and in particular to
synthesize software for controlling a wheeled rover robot; and with the LAAS autonomous
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robotic software, for which safety properties have been verified [12]. This BIP-based work
employed model checking and fault injection as verification and testing techniques. By
contrast, our framework will be centered on theorem proving and static analysis imported
from the world of concurrency.

The aims of our framework has similarities to those of the RoboChart framework, with the
difference that our scope is not as broad but is specialized to collision avoidance. RoboChart
[41] is a specification language for robotic systems developed at the University of York as
an extensive collaborative effort involving several researchers. It allows specifications of
interactive state machines in an UML-style notation, which is given semantics using the CSP
process algebra. RoboChart is supported by a collection of Eclipse plugins called RoboTool
that provides a graphical and textual editor and export of models and properties to various
model checkers, such as FDR and PRISM. RoboSim [18] is a simulation language, also based
on state machines, that can be used in conjunction with RoboChart.

The following table shows a rough comparison between our planned work and the University
of York line of work:

RoboChart/RoboTool/RoboSym ROSCollA

Computation model UML-based , CSP semanitcs ROS-based DSL

Targeted properties
deadlock-freeness

determinism
divergence-freeness

collision avoidance

Verification/validation approach
static – refinement proofs

dynamic-simulation
static – collision-freedom proofs

dynamic-corridors

Verification tools
model checkers

Isabelle theorem prover (ongoing)

Isabelle theorem prover
static analysis tools

navigation & path finding tools

Time representation explicit implicit
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