Lecture 4: Inductive and Coinductive Datatypes

Andrei Popescu

University of Sheffield

MGS 21
16 April, 2021

Bounded Natural Functors (BNFs)

Preliminariers: It's All About Shape and Content
Shapes

VANANA

Preliminariers: It's All About Shape and Content

N VANEVANIVIN

I N

az ag

Shapes filled with content from a set A = {a;, as, ...}

Natural Functors on Set

Set = the class of all sets

Natural Functors on Set

F : Set — Set is a natural functor if:

Natural Functors on Set

F : Set — Set is a natural functor if:

It comes with a set of shapes

Natural Functors on Set

F : Set — Set is a natural functor if:

It comes with a set of shapes, say

VANNANYA

Natural Functors on Set

F : Set — Set is a natural functor if:

It comes with a set of shapes, say

VANNANYA

Each element x € F A consists of:

a choice of a shape

Natural Functors on Set

F : Set — Set is a natural functor if:

It comes with a set of shapes, say

VANNANYA

Each element x € F A consists of:

/N

a choice of a shape, say

Natural Functors on Set

F : Set — Set is a natural functor if:

It comes with a set of shapes, say

VANNANYA

Each element x € F A consists of:

/N

a filling with content from A

a choice of a shape, say

Natural Functors on Set

F : Set — Set is a natural functor if:

It comes with a set of shapes, say

/N /N /N

Each element x € F A consists of:

a choice of a shape, say *

/N

a1 a9 as
a filling with content from A, say

Examples of Natural Functors

FA=NxA

Examples of Natural Functors

° ° (D)
FA=NxA

Examples of Natural Functors

®0 * *
FA=NxA

Examples of Natural Functors

®0 * *
FA=NxA

FA=N+A

Examples of Natural Functors

®0] 2
FA=NxA
a a a
°
FA=N+A L_Ty) LI

Examples of Natural Functors

° ° L)
FA=NxA

FA=N+A L_Ty) LI

Examples of Natural Functors

° ° L)
FA=NxA

FA=N+A L_Ty) LI

FA=ListA

Examples of Natural Functors

)] o
FA=NxA

a a a

[]
FA=N+A o) L_J

a

®] ® o3

F A= List A « . \\

Examples of Natural Functors

LN o L)
FA=NxA

a a a

[]
FA=N+A _Iy) L_§

a

(31 o 3

FA=List A 0 |\ \\

a aj as aj a9 as

Examples of Natural Functors

LN o L)
FA=NxA

a a a

[}
FA=N+A L_1y) L}

a

(31 2 3

FA=List A 0 |\ \\

FA=StreamA 7

FA=NxA

FA=N+A

FA=ListA

F A = Stream A

Examples of Natural Functors

®0 ®
a a
°
L)
a
(3} LD
. N
a aj a9

2

L

N

al a9 as

*3

FA=NxA
FA=N+A
FA=List A
F A = Stream A

Examples of Natural Functors

o) o LD
a a a
[
LT} L)
a
o 3

®0

N

ap az a3z a4

1 ag ag

a

Examples of Natural Functors

FA=Lazylist A 7

Examples of Natural Functors

FA=LazyList A =List A
o L) .3

NI

®0

Examples of Natural Functors

F A =LazyList A =List A U Stream A

®0

Examples of Natural Functors

F A =LazyList A =List A U Stream A

o L) o3

NI

a aj an aj a9 as

al a9 as aq

®0

Examples of Natural Functors

FA=BTree A (Full Binary Trees with leaves in A)

Examples of Natural Functors

FA=BTree A (Full Binary Trees with leaves in A)

ANANEVAS
VANANVAN

A

Examples of Natural Functors

F A=BTree A (Full Binary Trees with leaves in A)

VANVANENAS
/\ /N /\

al a9 as ayq

A

Examples of Natural Functors

FA=BTree A (Full Binary Trees with leaves in A)

ANANEVAS
VANANVAN

A

Examples of Natural Functors

F A=BTree A (Full Binary Trees with leaves in A)

A . A

Examples of Natural Functors

FA=BTree A (Full Binary Trees with leaves in A)

A

AN N N\

ap a az a az a4

Functorial Action (Mapper)

FA

Fr

FB

Functorial Action (Mapper)

FA

Fr

FB

Functorial Action (Mapper)

PARN

aq as as

Functorial Action (Mapper)

FA »
AN
aq as as
Ff
&»
PN
FB

Keep the same shape

Functorial Action (Mapper)

FA 'y
I
3] ag as
Ff
Iy
N

FB far faz fas

Keep the same shape
Apply f to the content

Commutation with the Identity Function

FA

FA

PARN

ay ag as

Iy
N

Commutation with the Identity Function

FA

Fid=id

FA

PARN

ay ag as

Iy
N

Commutation with Function Composition

FA s
ay ag as
Fr
F(oof)| FB .
PN
fai faz fas
Fg
»
FC — 1
g(fa1) g(faz) g(faz)

Il Il Il
(gof)as (gof)az (gof)as

Bottom Line

F : Set — Set

For all A i; B, we have F A F—f F B such that:

Fids = idea
F(gof)=FgoFf

Bottom Line

F : Set — Set

For all A i B, we have F A F—f F B such that:

Fidg =idpa

Functorialit
F(gof)=FgoFf y

FA

Fset 4

PA

Atoms

a1

PARN

a9

FA

Fset 4

PA

Atoms

a1

PARN

az

as

FA

Fset 4

{(]’17 az, (1’3}

PA

Atoms

FA

Fr

FB

Fset 4

Fsetp

PA

image f

PB

Atoms

PARN

a ag a3
FA Fset 4 DA
Ff image f
FB— ™" _pp

Atoms

PARN

a ag a3
FA Fset 4 DA
Ff image f
FB— ™" _pp

{a17a2:G3}

Atoms

Atoms

PARN

aq as as {al', az, (’Lg}
FA Fset 4 DA
Ff image f
FB Fsetp PB

{f a/la.f (]‘27f (1’3}

Atoms

PARN

a1 as as {al-, az, QS}
FA Fset 4 DA
Ff image f
FB Fsetp PB

Y
/ | \ {fa/lafa‘Zafa’fi}

far fay fas

Atoms

PARN

aq as as {al-, az, CL’g}
FA Fset 4 DA
Ff image f
FB Fsetp PB

ry
/ | \ {f ai, f az, f G:s}

far fay fas

Bottom Line

F : Set — Set

For all A% B, we have F A - F B such that:

Fidg =idpa

Functorialit
F(gof)=FgoFf y

Bottom Line

F : Set — Set

For all A% B, we have F A - F B such that:

Fidg =idpa

Functorialit
F(gof)=FgoFf y

Fset 4

For all A, we have F A — P A such that, for all A i B:

image f o Fset4 = Fsetp o image f

Bottom Line

F : Set — Set

For all A% B, we have F A - F B such that:

Fidg =idpa

Functorialit
F(gof)=FgoFf y

Fset 4

For all A, we have F A — P A such that, for all A i B:

image f o Fsets = Fsetg oimage f Naturality

Bottom Line: Natural Functors

F : Set — Set

For all A% B, we have F A - F B such that:

Fidg =idra

Functorialit
F(gof)=FgoFf y

Fset 4

For all A, we have F A — P A such that, for all A i B:

image f o Fsets = Fsetg oimage f Naturality

Examples of Natural Functors

Examples of Natural Functors

AL B FALFER

Examples of Natural Functors

Fset

4L B REN FaAPtpa

Examples of Natural Functors

Fset

4L B REN FaAPtpa

FA=NxA

Examples of Natural Functors

Fset

4L B REN FaAPtpa

FA:NXA Ff (n7(1'):(n7 .f(l)

Examples of Natural Functors

2B FAarlenR FAPp A

Fset (n,a) = {a}

Examples of Natural Functors

2B FAarlenR FAPp A

Fset (n,a) = {a}

FA=N+A

Examples of Natural Functors

2B FAarlenR FAPp A

Fset (n,a) = {a}

FA-N+ A Ff (Leftn) = Leftn Ff (Righta) = Right (f a)

Examples of Natural Functors

AL B FALLER Fafetp g
_ Ff(n,a)=(n, fa)
FA=N>A Eoet (n, a) = {0}
FA-N+ A Ff (Leftn) = Leftn Ff (Righta) = Right (f a)

Fset (Leftn) = @ Fset (Righta) = {a}

Examples of Natural Functors

AL B FALLER Fafetp g
_ Ff(n,a)=(n, fa)
FA=N>A Eoet (n, a) = {0}
FA-N+ A Ff (Leftn) = Leftn Ff (Righta) = Right (f a)

Fset (Leftn) = @ Fset (Righta) = {a}

FA=ListA

Examples of Natural Functors

AL B FALLER Fafetp g
_ Ff(n,a)=(n, fa)
FA=N>A Eoet (n, a) = {0}
FA-N+ A Ff (Leftn) = Leftn Ff (Righta) = Right (f a)

Fset (Leftn) = @ Fset (Righta) = {a}

E A~ List A Ff(ay-as-...-apn)=far-fas...-fay

Examples of Natural Functors

AL Failrp FaBSpa
_ Ff(n,a)=(n,[a)
FA=N>A Eoet (n, a) = {0}
B Ff (Leftn) = Leftn Ff (Righta) = Right (f a)
FA=N+4 Fset (Leftn) =@ Fset (Righta) = {a}
E A~ List A Ff(ay-as-...-apn)=far-fas...-fay

Fset (ay-as ... a,) ={a1,as,...,a,

f

A— B

FA=NxA

FA=N+A

FA=ListA

F A = Stream A

Examples of Natural Functors

Fset

FArLER FAESpA

Ff(n,a)=(n, fa)
Fset (n,a) = {a}

Ff (Leftn) = Leftn Ff (Righta) = Right (f a)
Fset (Leftn) = @ Fset (Righta) = {a}

Ff(ay-as-...-apn)=far-fas...-fay
Fset (ay-as ... a,) ={a1,as,...,a,

f

A— B

FA=NxA

FA=N+A

FA=ListA

F A = Stream A

Examples of Natural Functors

Fset

FArLER FAESpA

Ff(n,a)=(n, fa)
Fset (n,a) = {a}

Ff (Leftn) = Leftn Ff (Righta) = Right (f a)
Fset (Leftn) = @ Fset (Righta) = {a}

Ff(ay-as-...-apn)=far-fas...-fay
Fset (ay-as ... a,) ={a1,as,...,a,

Ff ((ai)ieN) = (f ai)ieN

f

A— B

FA=NxA

FA=N+A

FA=ListA

F A = Stream A

Examples of Natural Functors

Fset

Falep FaAPtpa
Ff(n,a)=(n, fa)
Fset (n,a) = {a}

Ff (Leftn) = Leftn Ff (Righta) = Right (f a)
Fset (Leftn) = @ Fset (Righta) = {a}

Ff(ay-as-...-apn)=far-fas...-fay
Fset (ay-as ... a,) ={a1,as,...,a,

Ff ((ai)ieN) = (f ai)ieN
Fset ((a)ien) = {a; | i € N}

Bounded Natural Functor (BNF)

“Bounded” means the existence of a cardinal k£ such that
|Fset z| < k (for all A and = € F A).

Bounded Natural Functor (BNF)

“Bounded” means the existence of a cardinal k£ such that
|Fset z| < k (for all A and = € F A).

There's a fixed bound on the content storable in elements of F A
(independently of the size of A).

This excludes, e.g., the powerset functor.

Datatypes = Initial Algebras of BNFs

Iterating Shape Composition

Natural functor F : Set — Set

Iterating Shape Composition

Natural functor F : Set — Set

The shapes of F: [v A

Fy
/N /ING

Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [| v A &

/N /IN

Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [v A &

/N VRN

Put them together by plugging in shape for content slot

Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [v A &

/N /1IN

Put them together by plugging in shape for content slot

Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [| v A]

/N /1IN

Put them together by plugging in shape for content slot

A/“\

VRN

Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [| v A]

/N /1IN

Put them together by plugging in shape for content slot

I

/N

Iterating Shape Composition

Natural functor F : Set — Set
Copies of the shapes of F: [| v A]

/N /1IN

Put them together by plugging in shape for content slot

N
/N SN

Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [| v A &

/N /IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

N
I/ \V I/i\l

Iterating Shape Composition

Natural functor F : Set — Set
Copies of the shapes of F: [| v A &

/N /IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

NI
I/ \V I/L\I

The leaves are always empty-content shapes

Iterating Shape Composition

Natural functor F : Set — Set
Copies of the shapes of F: [v A]

/N JIN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

A/‘.\ﬁ
./ \v ./i\.

Define IF = the set of all such finitary couplings

Properties of Ig: Bijectivity

Fle

dtor

Properties of Ig: Bijectivity

Fle

dtor

Properties of I¢

A/I\# FIF

/ N\ /1IN
u v " v =
dtor | | ctor
&
A/L\Q
/ N\ VRN Ir
u v E v =

ctor and dtor are mutually inverse bijections

. Bijectivity

Properties of Ig: Iteration

Properties of Ig: Iteration

Properties of Ig: Iteration

Properties of Ig: Iteration

Properties of Ig: Iteration

]
Flp o= F A
|dtor S|
o

]

Properties of I¢

. lteration

]
Flp o= F A
|dtor S|
o
f A
e
[]]

Properties of I¢

fm fa

. lteration

Properties of Ig: Iteration

Properties of I¢

. lteration

'y fa fu fe
/l v \v _/l_
Flp o ~F A
-,
Lot
» fA /fll \f‘
./i\. ./ \ ./‘\.

Properties of Ig: Iteration

FA
I e > A
A
N, ™\

Properties of I¢

. lteration

Properties of Ig: Iteration

FA
[PE— - A
f EX Y
fa /f|- \fa.
AN I VRN

Properties of Ig: Iteration

Properties of Ig: Iteration

Properties of Ig: Iteration

Flp ot ~F A
CtOI" SJ
[oo A
F f ” S &
s A /sll \

Properties of Ig: Iteration

Flp oot >FJA

lF”"”'"'f' - A
A/I‘\i sA/sll\sb
l\ I/‘\I |I\ l/l\l

I is the initial F-algebra

Properties of Ig: Iteration

Flp oot >FJA

lF”"”'"'f' - A
A/I‘\i sA/sll\sb
l\ I/‘\I |I\ l/l\l

I is the initial F-algebra
f =iterg

Properties of Ig: Induction

Properties of Ig: Induction

0 unary predicate on g

Properties of Ig: Induction

0 unary predicate on g
Want: If
then Vielg. vt

Flr

dtor

0 unary predicate on g
Want: If
then Vielg. v

Properties of I¢

: Induction

Properties of Ig: Induction

Fset
F|Fé~’P|F

dtor

12

0 unary predicate on g
Want: If
then Vielg. v

Properties of Ig: Induction

Fset
Flr———=PI¢

dtor

0 unary predicate on g
Want: If Viel. == i
then Vielp. 1

/l\.
N TSI\

’ Flr
dtor

TS,
l \\\\ u //// ‘ \\\\ []

0 unary predicate on g
Want: If Vi€ lg.
then Vielp. ¢

Fset

et P

Properties of Ig: Induction

= 1

Properties of Ig: Induction

»

/l\

NI\ N /I
Flp —=ts P,
dtor

"

l\ I/‘\.

0 unary predicate on g
Want: If Viel. == i
then Vielp. ¢

N AN

n v [] v | |

Fle

dtor

N SIN

0 unary predicate on g

Ir

Properties of Ig: Induction

Fset

P

If Vielp. (Vi' € Fset (dtori). pi') = ¢

then Vielp. ¢

N AN

n v [] v | |

Fle

dtor

N SIN

0 unary predicate on g

Ir

Properties of Ig: Induction

Fset

P

If Vielg. (Vi' € Fset (dtori). ¢ i') = i

then Vielp. ¢

Properties of Ig: Induction

/N N IN

v [] v [] [] v] v u

Fset
Flr———=PI¢

dtor[/
components

0 unary predicate on g
If Vielg. (Vi' € componentsi. i) = ¢ i
then Vielp. ¢

Properties of Ig: Destructor-Style Induction

I | |
NN, I\ SN

Fset
Flr———=PI¢

dtor[/
components

0 unary predicate on g
If Vielg. (Vi' € componentsi. i) = ¢ i
then Vielp. ¢

Properties of Ig: Constructor-Style Induction

Fset
Flp———"PI¢

0 unary predicate on g
If Vielp. (Vi e componentsi. pi') = @i
then Vielp. ¢

Properties of Ig: Constructor-Style Induction

Fset
Flp———"PI¢

0 unary predicate on g
If Vo e F . (VieFsetz. ¢ i) = ¢ (ctor)
then Vielp. ¢

Bottom line for Ig

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:

Bottom line for Ig

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:

ctor bijection

Bottom line for Ig

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:
ctor bijection

Iteration (Initial Algebra Property): For all (4,s:F A — A), there exists
a unique function iterg such that

F||: F iterg FA

Bottom line for Ig

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:
ctor bijection

Iteration (Initial Algebra Property): For all (4,s:F A — A), there exists
a unique function iterg such that

F||: F iterg FA

Induction: Given any predicate ¢ on If

Vo eFlp. (VieFsetz. p i) = ¢ (ctor)

ViElF.gﬁi

Bottom line for Ig

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:

ctor bijection ‘ I[F = the datatype of F‘

Iteration (Initial Algebra Property): For all (4,s:F A — A), there exists
a unique function iterg such that

F||: F iterg FA

Induction: Given any predicate ¢ on If

Vo eFlp. (VieFsetz. p i) = ¢ (ctor)

ViEh:.(pi

Example of Datatype

Let B be a fixed set. FA={x}+BxA4

Example of Datatype

Let B be a fixed set. FA={x}+BxA4

The shapes of F: Left *

Example of Datatype

Let B be a fixed set. FA={x}+BxA4

The shapes of F: Left + Right (b,_) for each be B

Example of Datatype

Let B be a fixed set. FA={x}+BxA4

The shapes of F: Left + Right (b,_) for each be B

Or, graphically: [o foreachbe B

Example of Datatype

Let B be a fixed set. FA={x}+BxA4

The shapes of F: Left + Right (b,_) for each be B

Or, graphically: [o foreachbe B

Who is |g?

Example of Datatype

Let B be a fixedset. FA={+*}+BxA

The shapes of F: Left + Right (b,_) for each be B
Or, graphically: [o foreachbe B

Who is |7
Its elements have the form Right(by, ..., Right(b,,, Right (Left %)) ...)

Example of Datatype

Let B be a fixedset. FA={+*}+BxA

The shapes of F: Left + Right (b,_) for each be B

Or, graphically: [o foreachbe B
Who is |7
Its elements have the form Right(by, ..., Right(b,,, Right (Left %)) ...)

l.e., essentially lists by ... D,

Example of Datatype

Let B be a fixedset. FA={+*}+BxA
The shapes of F: Left + Right (b,_) for each be B

Or, graphically: [

o, for each be B
Who is |7
Its elements have the form Right(by, ..., Right(b,,, Right (Left %)) ...)
l.e., essentially lists by ... D,

So I = Listp

Example of Datatype

Bfixed FA={#}+BxA f=iters Ig=Listg

Flr i FA

ctor s

SN

le

Ve eFlg. f(ctorz) =s((F f)x)

- List

Example of Datatype

Bfixed FA={x}+BxA f=itery, If=Listg

{*}+B><|F {*}+Bxf

(+}+Bx A

ctor S

Ir A

Ve eFlg. f(ctorz) =s((F f)x)

- List

Example of Datatype: List

Bfixed FA={x}+BxA f=itery, If=Listg

Define: Nil = ctor (Left +) Cons(b, ¢) = ctor (Right (b,7))
SNE A = s (Left) Cons”(b,a) = s (Right (b, a))

{*}+B><|F {*}+Bxf

{#s}+BxA

ctor S

Ir A

Ve eFlg. f(ctorz) =s((F f)x)

Example of Datatype

Bfixed FA={#}+BxA f=iters Ig=Listg

Nil = ctor (Left +) Cons(b, ¢) = ctor (Right (b,17))

Define: Nil* = s (Left x) Cons®(b,a) = s (Right (b, a))

Bxf

B x |g . Bx A
Cons Cons™
Nil € I ; AsNil4

Vo e Flg. f (ctorz) =s((F f) x)

- List

Example of Datatype

Bfixed FA={+}+BxA f=iters Ig=Listg

Nil = ctor (Left) Cons(b, %) = ctor (Right (b,17))

Define: .4 _ (Left +) Cons®(b,a) = s (Right (b, a))
Bl) BxA
Cons Cons™
Nil € I - AsNilt
£ Nil = Nil*

Vbe B, iele. f(Cons(b,i)) = Cons™ (b, f i)

- List

Example of Datatype

Bfixed FA={+}+BxA f=iters Ig=Listg

Nil = ctor (Left) Cons(b, %) = ctor (Right (b,17))

Define: Nil* = s (Left) Cons™(b,a) = s (Right (b, a))
Bxle Sl BxA
Cons Cons™
Nil € I - AsNilA
FNil=Nil* | We obtain standard list iteration! |

Vbe B, iele. f(Cons(b,i)) = Cons™ (b, f i)

- List

Example of Datatype

Bfixed FA={#}+BxA If=Listg

Fset

Fle Ple

ctor

I

Vo e Flg. (VieFsetx. pi) = ¢ (ctor z)

Vielp. i

- List

Example of Datatype

Bfixed FA={s}+BxA If=Listy

Left * —»g&, Right (b,i) —{z
() + B x|p 2 Rene 0~ Pl

ctor

l¢

Vo eFlg. (VieFsetz. p i) = ¢ (ctor x)

ViEh:.(pi

- List

Example of Datatype

Bfixed FA={s}+BxA If=Listy

Nil = ctor (Left x) Cons(b,) = ctor (Right (b,7))

Left * —»g&, Right (b,i) —{z
() + B x|p 2 Rene 0~ Pl

ctor

l¢

Vo eFlg. (VieFsetz. p i) = ¢ (ctor x)

ViEh:.(pi

- List

Example of Datatype
Bfixed FA={x}+BxA Ig=Listg

Nil = ctor (Left) Cons(b,4) = ctor (Right (b,17))

Left + @, Right (b,i) ~{i
(+}+Bxlf e @, Right (b,i) ~{i} Pl

ctor

(Vi e Fset (Left x). p i) = ¢ (ctor (Left *))
Vbe B, i€lg. (Vi' € Fset (Right (b,7)). ¢ i) = ¢ (ctor (Right (,1)))

- List

Example of Datatype
Bfixed FA={x}+BxA Ig=Listg

Nil = ctor (Left) Cons(b,4) = ctor (Right (b,17))

Left + @, Right (b,i) ~{i
(+}+Bxlf e @, Right (b,i) ~{i} Pl

ctor

(Vied. pi) = ¢ (ctor (Left *))
Vbe B, i€lg. (Vi' € Fset (Right (b,7)). ¢ i) = ¢ (ctor (Right (b,1)))

- List

Example of Datatype
Bfixed FA={x}+BxA Ig=Listg

Nil = ctor (Left) Cons(b,4) = ctor (Right (b,17))

Left + @, Right (b,i) ~{i
(+}+Bxlf e @, Right (b,i) ~{i} Pl

ctor

© (ctor (Left *))
Vbe B, ie€lg. (Vi € Fset (Right (b,7)). ¢ i') = ¢ (ctor (Right (b,1)))

- List

Example of Datatype
Bfixed FA={x}+BxA Ig=Listg

Nil = ctor (Left) Cons(b,4) = ctor (Right (b,17))

Left + @, Right (b,i) ~{i
(+}+Bxlf e @, Right (b,i) ~{i} Pl

ctor

© Nil
\}/
Vbe B, ie€lg. (Vi € Fset (Right (b,7)). ¢ i) = ¢ (ctor (Right (b,7)))

- List

Example of Datatype

Bfixed FA={x}+BxA If=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))

Left + @, Right (b,i)~{i
(o) 4 B xlp et 2 gt () () Pl

ctor

& Nil
Vbe B, ielg. (Vi"e{i}. pi") = ¢ (ctor (Right (b,1)))

Vielg. pi

- List

Example of Datatype

Bfixed FA={x}+BxA If=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))

Left + @, Right (b,i)~{i
(o) 4 B xlp et 2 gt () () Pl

ctor

¢ Nil
®
Vbe B, i€lg. ¢ i= ¢ (ctor (Right (b,1)))

Vielg. pi

- List

Example of Datatype

Bfixed FA={#}+BxA Ig=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))

Left + &, Right (b,5) {i
(4} + Bxlp 272 RE0O20 _py

ctor

le

o Nil
Vbe B, i€lg. pi = (Cons(b,i))

Vielg. pi

- List

Example of Datatype

Bfixed FA={x}+BxA If=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))

Left + @, Right (b,i)~{i
(o) 4 B xlp et 2 gt () () Pl

ctor

le

@ Nil ’Obtain standard list induction!‘
Vbe B, i€lg. i = (Cons(b,1i))

Vielg. pi

- List

Codatatypes = Final Coalgebras of BNFs

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Iterating Shape Composition Revisited

Natural functor F : Set — Set

The shapes of F:)
| /N RN

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: v
| /N AN

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: H Vv o A ry
| /N VRN

Put them together by plugging in shape for content slot

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: H Vv o A ry
| /N VRN

Put them together by plugging in shape for content slot

Iterating Shape Composition Revisited

Natural functor F : Set — Set
° A &

/N RN

Copies of the shapes of F: v

Put them together by plugging in shape for content slot

A/“\

VRN

Iterating Shape Composition Revisited

Natural functor F : Set — Set
° A &

/N RN

Copies of the shapes of F: v

Put them together by plugging in shape for content slot

I

/N

Iterating Shape Composition Revisited

Natural functor F : Set — Set
° A &

/N RN

Copies of the shapes of F: v

Put them together by plugging in shape for content slot

AT,
N SN

Iterating Shape Composition Revisited

Natural functor F : Set — Set
° A &

/N /IN

Copies of the shapes of F: v

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: B v o A ry
/7 N\ VRN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

The leaves are always empty-content shapes

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: BV o A 'y
/N AN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

The leaves are always empty-content shapes

Iterating Shape Composition Revisited

Natural functor F : Set — Set
° A &

/N /IN

Copies of the shapes of F: v

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Allow infinite couplings

Iterating Shape Composition Revisited

Natural functor F : Set — Set
° A &

/N /IN

Copies of the shapes of F: v

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Allow infinite couplings

Iterating Shape Composition Revisited

Natural functor F : Set — Set
° A &

/N /IN

Copies of the shapes of F: v

Put them together by plugging in shape for content slot
until there are no lingering slots left!

T,
l/ \A O/L\I
o]

Allow infinite couplings

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: H Vv o A ry
| /7 N\ VAN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

Allow infinite couplings

Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: BV o A I
| /N /1IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

I,
I/ \A /‘\
:/ \: ‘

Define Jr = the set of all such (possibly) infinitary couplings

Recall: Properties of I¢

I i
/ \v ./i\.

dtor | | ctor

Rl A
./ N _/_ Ir

ctor and dtor are mutually inverse bijections

. Bijectivity

Properties of J¢

/I\ F e

A &
/SN /IN
[] : v &
dtor | | ctor
&
AT,
/SN /I "
u : v ®

ctor and dtor are mutually inverse bijections

. Bijectivity

Properties of Jr: Bijectivity

Fy
R I W
/N :/\\

dtor | | ctor

A/L\#
/ N :/ Jr

ctor and dtor are mutually inverse bijections
A similar property holds for Jg, where we use the same notations
for constructor and destructor

lr is embedded in Jg

Fl

FJr

dtor | | ctor dtor | | ctor

lr is embedded in Jg

Fl F Jr

dtor | | ctor dtor | | ctor

L = iterciorF Je—F Jg

FA

h

JE

Properties of Jg: Coiteration

Properties of Jg: Coiteration

Properties of Jg: Coiteration

Properties of Jg: Coiteration

FA F Jr
S ctor
doid

Properties of Jg: Coiteration

Properties of Jg: Coiteration

ry
N
aq a9 as

FA > F J
Ff
S ctor
At

Properties of Jg: Coiteration

ay /Jg\ag /T\

[a1 [az [as
F A ~F J;
Ff
S ctor
[

Properties of Jg: Coiteration

&» »
TN N
ay as as fay fas fas

FA > F J
Ff
S ctor
At

fa [az [as

Properties of Jg: Coiteration

ay /Jg\ag /T\

fa fas fas

F A ~F J;

Ff
S ctor
[
Py
a / | \

far fas fas

a1, az,as are not “smaller” than a in any sense

Properties of Jg: Coiteration

ay /cj;\ag /T\

fa [az [as

F A ~F J;
Ff
S ctor
[
Py
a / | \
far fas fas

a1, az,as are not “smaller” than a in any sense
But computation has made progress

FA

Properties of Jg: Coiteration

FA

Properties of Jg: Coiteration

FA

Properties of Jg: Coiteration

sa

FA

Properties of Jg

»
al ag as

: Coiteration

Properties of Jg

S ay S Qg s as

FA

: Coiteration

Properties of Jg: Coiteration

Q/I\A
N AR

ai a1,2 az1 G22 G23

s

Properties of Jg: Coiteration

Properties of Jg: Coiteration

P

L)

A
N N

1

A
N N

FA

Properties of Jg

P

L) A
N N

s a = the seed encoding the
growth of the tree f a

/:\A

: Coiteration

Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg > F Jg)

Coiteration (Final Coalgebra Property): For all (A,s: A - F A), there
exists a unique function coiterg with

F coitery

FA FlJe

s ctor

coiterg

JE

Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg > F Jg)

Coiteration (Final Coalgebra Property): For all (A,s: A - F A), there
exists a unique function coiterg with

F coiter

FA FJe

s dtor

coiterg

JE

Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg > F Jg)

Coiteration (Final Coalgebra Property): For all (A,s: A - F A), there
exists a unique function coiterg with

F coiter

FA FJe

s dtor

coiterg

A JE

Jr = the codatatype of F

The | to JF embedding revisited

F
Flg -

FJr

dtor | | ctor dtor | | ctor

Ir d Jr

¢ can be regarded as defined by
iteration on Ig

L= itercior

The | to JF embedding revisited

F.

Fl F e

dtor | | ctor dtor | | ctor

2 - JF

¢t can be regarded as defined by
iteration on Ig but also by coiteration on Jg!

L = itercior = COItergior

Properties of Jg: Coinduction

Properties of Jg: Coinduction

Want: j=7

Properties of Jg: Coinduction

J1 J2 J3

Want: j =7

Properties of Jg

J1 J2 J3

Suffices: j1 = J]
J2 = j3
J3 = J3

: Coinduction

Properties of Jg

& &
A J2 J3 A Ja J3
N N
Jii 12 j{,l ji,z

Suffices: j1 = J]
J2 = J3
3 = Js

: Coinduction

Properties of Jg

Suffices: ji1 =711, Ji2=J12
J2 = Ja
J3 :J;’z

: Coinduction

A
N

Suffices:

Properties of J¢

A/*\

N

J11 =711 J12=J12

J2 = Js
J3 =73

: Coinduction

Properties of Jg: Coinduction
s s
A : : A : :
N I\

If we can stay in the game indefinitely, then equality holds!

Suffices: ji1 =711, J1.2=J12
b
J2 = J2
J3=1Js

Properties of Jg: Coinduction

A : :
N N

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?

Suffices: ji1 =711, J1.2=J12
Al
J2 =02
J3=1Js

Properties of Jg: Coinduction

A : :
N N

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?
By exhibiting a “strategy”

Suffices: ji1 =711, J1.2=J12
J2 = Js
J3=1Js

But First: Relators

FA

Frel R

FB

But First: Relators

FA

Frel R

FB

But First: Relators

But First: Relators

A FA
R Frel R
B FB

Two elements of F A and F B are related by Frel R iff

But First: Relators

A FA I
N
R Frel R
ry
N
B FB

Two elements of F A and F B are related by Frel R iff
they have the same shape

B

FA

Frel R

FB

But First

N

a1 a2 as

Fy

VLI

bl Z)Q])_;

Two elements of F A and F B are related by Frel R iff

they have the same shape

and the contents from corresponding slots are related by R

: Relators

But First

A FA .
PR
aq a9 as
R Frel R
»
ELIRN
B FB bl Z)Q])_;

Two elements of F A and F B are related by Frel R iff
they have the same shape

and the contents from corresponding slots are related by R
R aq b], R a9 b2, R as [);;

: Relators

Relator Defined from Mapper

RN AR

R relation between A and B, x € F A, yeF B

=&
aq asz

Relator Defined from Mapper

R relation between A and B, x € F A, yeF B

Frel R = y defined as

Relator Defined from Mapper

RN AR

R relation between A and B, x € F A, yeF B

Frel R = y defined as
dzeF{(a,b)|Rab}.Fmiz=0xAFmaz=y

Relator Defined from Mapper

zZ=4&

SN

(a1,b1) (ag, b2) (a3, b3)

SN PERN

R relation between A and B, x € F A, yeF B

Frel R = y defined as
dzeF{(a,b)|Rab}.Fmiz=0xAFmaz=y

Relators for the Running Examples

R relation between A and B

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA Frel R (m,a) (n,b) <

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)

FA=N+A

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)

Frel Ruv <

FA=N+A

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)
Frel Ruv <=

FA=N+A4 (In.u=v=_Leftn)v
(Ja,b.uw=Righta A v=Rightb A Rab)

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)
Frel Ruv <=

FA=N+A4 (In.u=v=_Leftn)v
(Ja,b.uw=Righta A v=Rightb A Rab)

FA=List A

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)
Frel Ruv <=
FA=N+A4 (In.u=v=_Leftn)v
(Ja,b.uw=Righta A v=Rightb A Rab)

F A= List A Frel R (aq-as-...-ay) (by-ba-...-b,) <

Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)

Frel Ruv <=
FA=N+A4 (In.u=v=_Leftn)v
(Ja,b.uw=Righta A v=Rightb A Rab)

Frel R (aq-as-...-ay) (by-ba-...-b,) <

Fa=tissd 5 i R b)

Back to the “Strategy” for Proving Equality

JE

dtor

F

Back to the “Strategy” for Proving Equality

JE

dtor

F

Given binary relation R on Jg

Back to the “Strategy” for Proving Equality

dtor

F

Given binary relation R on Jg
Ifvy, 7. Rjj

Back to the “Strategy” for Proving Equality

JE] j’
dtor
» »
/N /1N
FJe JvJ2 J3 71]g 7,3

Given binary relation R on Jg
If Vj,5. R j j° = Frel R (dtor j) (dtor j")

Back to the “Strategy” for Proving Equality

JE] j’
dtor
» »
/N /1N
FJe JvJ2 J3 71]g 72»

Given binary relation R on Jg
If Vj,5. R j j° = Frel R (dtor j) (dtor j")
Then R is included in equality

Back to the “Strategy” for Proving Equality

JF J i’
dtor
» »
JIN G JIN
FJe JvJ2 J3 71]g 72»

Given binary relation R on Jg
If Vj,5. R j j° = Frel R (dtor j) (dtor j")
Then R is included in equality Vj,j. Rjj' = j=j'

Back to the “Strategy” for Proving Equality

JE J J’
dtor
& &
JIN I
FJe JuvJ2 J3 /1]é /,3

Given binary relation R on Jg
If Vj,j. Rjj' = Frel R (dtor j) (dtor j") ‘ R F-bisimulation
Then R is included in equality Vj, ;. Rjj = j=4'

Back to the “Strategy” for Proving Equality

JE J J’
dtor
& &
JIN I
FJe JuvJ2 J3]1]é JIB

Summary: to prove j = j’,

Given binary relation R on Jg

If Vj,j. Rjj' = Frel R (dtor j) (dtor j") ‘ R F-bisimulation
Then R is included in equality Vj, ;. Rjj = j=4'

Back to the “Strategy” for Proving Equality

JE J J'
dtor
» L)
I /N
FJp Ji1 o J2 J3 J1 Js Js

Summary: to prove j = j’, find F-bisimulation R with R j j'
Given binary relation R on Jg

If Vj,j. Rjj' = Frel R (dtor j) (dtor j") ’R F-bisimulation
Then R is included in equality Vj,j'.Rjj = j=j

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:

dtor bijection

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all (A,s: A —F A), there
exists a unique function coiter, with

F coiter
FA——=FJ
S[[dtor

coiterg

A JF

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all (A,s: A —F A), there
exists a unique function coiter, with

F coiterg

FA—CFyp
S[[dtor
A coiterg JF

Coinduction: Given any binary relation R on Jg

R is an F-bisimulation

Vi g Ry =j=7

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all (A,s: A —F A), there
exists a unique function coiter, with

F coiterg

FA—CFyp
s[[dtor
A coiterg JF

Coinduction: Given any binary relation R on Jg

Vi, 5. Rjj" = Frel R (dtor j) (dtor j')
Vi,j"Rjj =j=J

Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:

dtor bijection ‘JF = the codatatype of F‘

Coiteration (Final Coalgebra Property): For all (A,s: A —F A), there
exists a unique function coiterg with

F coiter
FA——=FJ
s[[dtor

coiterg

A Jr

Coinduction: Given any binary relation R on Jg

Vi, 5. Rjj" = Frel R (dtor j) (dtor j')
Vi,j"Rjj =j=J

Example of Codatatype

Let Bbeafixedsett FA=BxA

Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F:

Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F: (b, _) for each be B

Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: o foreach be B

Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: o foreach be B

Who is Jg?

Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: o foreach be B

Who is Jg?
Its elements have the form (by, (bo, ..., (bn, - -

Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: o foreach be B
Who is Jg?
Its elements have the form (b1, (ba, ..., (by, ...

l.e., essentially streams by - by ... b, ...

Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: o foreach be B
Who is Jg?
Its elements have the form (b, (bo. ..., (b,, .
l.e., essentially streams by - by ... b, ...

So Jg = Streamp

Example of Codatatype: Stream

Bfixed FA=BxA f=coiter, Jf=Streamp

s dtor

FA FJe

dtor (fa)=(F f) (sa)

Example of Codatatype: Stream

Bfixed FA=BxA f=coiter, Jf=Streamp

s dtor

BXA BX_JF

dtor (fa)=(F f) (sa)

Example of Codatatype

Bfixed FA=BxA f=coiter, Jf=Streamp

hd = 71 odtor tl = 7 o dtor
hd? = T 08 4 = Ty 08

A ! I

Define:

s dtor

Bx A el BxJ§

dtor (fa)=(F f) (sa)

: Stream

Example of Codatatype: Stream

Bfixed FA=BxA f=coiter, Jf=Streamp

hd = 71 odtor tl = 7 o dtor

Define: , ,
etne hd* =mos 4 =m908
A f Jr
(hd? 1) (hd,tl)
BxA o Bx Jr

dtor (fa)=(F f) (sa)

Example of Codatatype: Stream

Bfixed FA=BxA f=coitery Jg=Streamp

hd = 71 odtor tl = 7 o dtor

Define: hd® =705 t=myos
4 f JE A ! Jr
» hd 4 e
B A g =

dtor (fa)=(F f) (sa)

Example of Codatatype: Stream

Bfixed FA=BxA f=coiter, Jr=Streamp

hd = 1 odtor tl = 9 o dtor

Define: hd? = M08 t = Ty 08
A ! I A ! I
" hd A hd
B A ! B

hd (f a) =hd? a
tl(fa)=f(t"a)

Example of Codatatype: Stream

Bfixed FA=BxA f=coiter, Jr=Streamp

hd = 1 odtor tl = 9 o dtor

Define: hd? = M08 t = Ty 08
A ! I A ! I
" hd A hd
B A ! B

hd (f a) =hd? a ’ Standard stream coiteration

tl(fa)=f(t"a)

Example of Codatatype

Bfixed FA=BxA Jg = Streamp

Jr Jr
dtor dtor
F JF Frel R F JF

R is an F-bisimulation

Vi, i Rjj =j=7'

: Stream

Example of Codatatype

Bfixed FA=BxA Jg = Streamp

JF JF

dtor dtor

Bx g ((6,5),(0",5")) = b=b'AR j j Bx Jr

R is an F-bisimulation

Vi, i Rjj =j=7'

: Stream

Example of Codatatype

Bfixed FA=BxA Jg = Streamp
hd = 1 odtor tl = w9 o dtor

JF JF

dtor dtor

Bx g ((6,5),(0",5")) = b=b'AR j j Bx Jr

R is an F-bisimulation

Vi, i Rjj =j=7'

: Stream

Example of Codatatype

Bfixed FA=BxA Jg = Streamp
hd = 1 odtor tl = w9 o dtor

R

-JF JF

(hd,t) (hd,tl)

b,7),(b",5")) = b=b'AR j 5’
Bx Jp ((0,5).(2".5")) AR jj Bx Jr

R is an F-bisimulation

Vi, i Rjj =j=7'

: Stream

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = 1 odtor tl = w9 o dtor

R

-JF JF

(hd,tl) (hd,tl)

b,5),(b",5")) = b=b'AR j 5’
Bx Jg ((0,5).(2".5")) AR jj Bx Jp

V4, 5. Rjj" = Frel R (dtor j) (dtor j')
Vi, jRj) =j=J

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = 1 odtor tl = w9 o dtor

-JF JF

(hd,tl) (hd,tl)

b,5),(b",5")) = b=b'AR j 5’
Bx Jg ((6,9),(0".3")) AR jj Bx Jp

Vj, 5. Rjj == Frel R (hd j,tl j) (hd j’. tI ')
Vi, Rjj =—=j=J'

Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = 1 odtor tl = w9 o dtor

-JF JF

(hd,tl) (hd,tl)

b,5),(b",5")) = b=b'AR j 5’
Bx J ((6,9),(0".3")) AR jj Bx Jp

Vi, Rjj ==hdj=hdj A R(tlj)(tlj)
Vi, Rjj ==j=7'

Concrete Example of Coiteration

even : Streamp — Streamp
hd (even j) =hd j
tl (even j) = even (tl (tl 5))

Concrete Example of Coiteration

even : Streamp — Streamp
hd (even j) =hd j
tl (even j) = even (tl (tl 5))

odd : Streamp — Streamp
hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl 7))

Concrete Example of Coiteration

even : Streamp — Streamp
hd (even j) =hd j
tl (even j) = even (tl (tl 5))

odd : Streamp — Streamp
hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl 7))

zip : Streamp x Streampg — Streamp
hd (zip (j1, j2)) = hd j1
tl (zip (41, j2)) = zip (J2, tl j1)

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j

tl (zip (even j,odd j)) =tl j hd (zip (even j,o0dd j)) =hd j

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j

tl (zip (even j,odd j)) =tl j hd (zip (even j,odd j)) =hd j

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j

zip (odd j, tl (even j)) =tlj hd (zip (even j,o0dd j)) =hd j

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j

zip (odd j, even (tl (tlj))) =tlj hd (zip (even j,o0dd j)) =hd j

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j
zip (odd j, even (tl (tlj))) =tlj hd (zip (even j,o0dd j)) =hd j

tl (zip (odd j, even (tl (tl5))) =t (tl 5) hd ...=hd (tl j)

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j
zip (odd j, even (tl (tlj))) =tlj hd (zip (even j,o0dd j)) =hd j

zip (even (tl (tl 7)), odd (tl (tl j))) =tl (tlj) hd ...=hd (tl)

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j
zip (odd j, even (tl (tlj))) =tlj hd (zip (even j,o0dd j)) =hd j

zip (even (tl (tl 7)), odd (tl (tl j))) =tl (tlj) hd ...=hd (tlj)

Incremental Proof by Structural Coinduction

zip (even j,odd j) = j

zip (odd j, even (tl (tlj))) =tlj hd (zip (even j,o0dd j)) =hd j

zip (even (tl (tl 7)), odd (tl (tl j))) =tl (tlj) hd ...=hd (tlj)
Bisimulation: R j; jo =

j1 = zip (even j2,0dd ja) v
3j. j1 =zip (odd j, even (tl (t15))) A jo=tlj

(Co)datatypes in Isabelle/HOL

(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors

(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.

(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A~ {x} + Bx A

(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A~ {x} + Bx A
but B ~ Listpg is also a natural functor

(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A {*} + Bx A
but B ~ Listpg is also a natural functor
and similarly for B ~ Streamp

(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A {*} + Bx A
but B ~ Listpg is also a natural functor
and similarly for B ~ Streamp

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors
User can write high-level specifications:

codatatype Stream A = Cons (hd : A) (tl: List A)

Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors
User can write high-level specifications:
codatatype Stream A = Cons (hd : A) (tl: List 4)

In the background:
e Isabelle parses this into a natural functor: B~ B x A

e Then infers high-level principles for (co)recursion and (co)induction
for Stream

o Finally, Stream is itself registered as a natural functor

Examples

datatype List A = Nil | Cons A (List A)

Examples

datatype List A = Nil | Cons A (List A)

codatatype LazylList A = Nil | Cons A (List A)

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)

datatype BTree A = Leaf A | Node (BTree A) (BTree A)

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

datatype Tree A = Node A (List (Tree A))

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

datatype Tree A = Node A (List (Tree A))

finite-depths, finitely branching
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

datatype Tree A = Node A (Lazy_List (Tree A))

finite-depths, infinitely branching
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (Lazy_List (Tree A))

possibly infinite-depths, infinitely branching
A-labeled trees

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (Lazy_List (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (Countable Set (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (Set;, (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (Multi_Set (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (Fuzzy_Set (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (PLUG_YOUR_OWN (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (PLUG_YOUR_OWN (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (PLUG_YOUR_OWN (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (PLUG_YOUR_OWN (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

e Show a set operator to be a bounded natural functor (BNF)
o Register it

e Then Isabelle will allow nesting it in (co)datatype expressions

Summary

Datatypes and codatatypes have intuitive representations in terms of
Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it
available to the users

Summary

Datatypes and codatatypes have intuitive representations in terms of
Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it
available to the users with a lot of sugar to hide the category theory ®

Moreover, the abstract constructions have very concrete intuitions

Summary

Datatypes and codatatypes have intuitive representations in terms of
Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it
available to the users with a lot of sugar to hide the category theory ®

Moreover, the abstract constructions have very concrete intuitions

The abstract reality can be very concrete

Relevant Classes of Functors

Dependent Polynomial Accessible

f

Indexed Container

Quotient of Polynomial

(Infinitary) Analytic

Quotient Container

/

Polynomial

Container

Relevant Classes of Functors

Supernominal
(syntax with bindings)

Dependent Polynomial Accessible

- :

Indexed Container Quotient of Polynomial

/ LEAN (

co)datatypes
Avigad et al. ITP'19

(Infinitary) Analytic

Quotient Container

/

Polynomial

Container

Relevant Classes of Functors

Supernominal
(syntax with bindings)

Dependent Polynomial Accessible

- :

Indexed Container Quotient of Polynomial

/ LEAN (co)

datatypes
Avigad et al. ITP'19

(Infinitary) Analytic

Quotient Container

/

Polynomial Co.ql(co)datatypes
- gaining some
. compositionality
Container Tassi, ITP'19

Much more references to relevant literature
will be provided from the course website.

	Bounded Natural Functors (BNFs)
	Datatypes = Initial Algebras of BNFs
	Codatatypes = Final Coalgebras of BNFs
	(Co)datatypes in Isabelle/HOL

