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Natural Functors on Set
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Natural Functors on Set

F : Set — Set is a natural functor if:

It comes with a set of shapes, say
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Each element x € F A consists of:

a choice of a shape, say *
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Functorial Action (Mapper)
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FB far faz fas

Keep the same shape
Apply f to the content
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Bottom Line: Natural Functors

F : Set — Set

For all A% B, we have F A - F B such that:

Fidg =idra

Functorialit
F(gof)=FgoFf y

Fset 4

For all A, we have F A — P A such that, for all A i B:

image f o Fsets = Fsetg oimage f  Naturality
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Examples of Natural Functors
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Ff(n,a)=(n, fa)
Fset (n,a) = {a}

Ff (Leftn) = Leftn  Ff (Righta) = Right (f a)
Fset (Leftn) = @ Fset (Righta) = {a}

Ff(ay-as-...-apn)=far-fas...-fay
Fset (ay-as ... a,) ={a1,as,...,a,

Ff ((ai)ieN) = (f ai)ieN
Fset ((a)ien) = {a; | i € N}
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Bounded Natural Functor (BNF)

“Bounded” means the existence of a cardinal k£ such that
|Fset z| < k (for all A and = € F A).

There's a fixed bound on the content storable in elements of F A
(independently of the size of A).

This excludes, e.g., the powerset functor.



Datatypes = Initial Algebras of BNFs



Iterating Shape Composition

Natural functor F : Set — Set



Iterating Shape Composition

Natural functor F : Set — Set

The shapes of F: [ v A

Fy
/N /ING



Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [ | v A &

/N /IN



Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [ v A &

/N VRN

Put them together by plugging in shape for content slot



Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [ v A &

/N /1IN

Put them together by plugging in shape for content slot



Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [ | v A ]

/N /1IN

Put them together by plugging in shape for content slot

A/“\

VRN



Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [ | v A ]

/N /1IN

Put them together by plugging in shape for content slot

I

/N



Iterating Shape Composition

Natural functor F : Set — Set
Copies of the shapes of F: [ | v A ]

/N /1IN

Put them together by plugging in shape for content slot

N
/N SN



Iterating Shape Composition

Natural functor F : Set — Set

Copies of the shapes of F: [ | v A &

/N /IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

N
I/ \V I/i\l



Iterating Shape Composition

Natural functor F : Set — Set
Copies of the shapes of F: [ | v A &

/N /IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

NI
I/ \V I/L\I

The leaves are always empty-content shapes



Iterating Shape Composition

Natural functor F : Set — Set
Copies of the shapes of F: [ v A ]

/N JIN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

A/‘.\ﬁ
./ \v ./i\.

Define IF = the set of all such finitary couplings
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Properties of I¢

A/I\# FIF
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&
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u v E v =

ctor and dtor are mutually inverse bijections

. Bijectivity
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Flp oot >FJA

lF”"”'"'f' ...... - A
A/I‘\i sA/sll\sb
l\ I/‘\I |I\ l/l\l

I is the initial F-algebra
f =iterg
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Properties of Ig: Induction

Fset
Flr———=PI¢

dtor

0 unary predicate on g
Want: If Viel. == i
then Vielp. 1
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0 unary predicate on g
Want: If Vi€ lg.
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Properties of Ig: Induction
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0 unary predicate on g
Want: If Viel. == i
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Properties of Ig: Induction

Fset

P

If Vielg. (Vi' € Fset (dtori). ¢ i') = i

then Vielp. ¢



Properties of Ig: Induction

/N N IN

v [ ] v [ ] [ ] v ] v u

Fset
Flr———=PI¢

dtor[ /
components

0 unary predicate on g
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Properties of Ig: Destructor-Style Induction
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Fset
Flr———=PI¢

dtor[ /
components

0 unary predicate on g
If Vielg. (Vi' € componentsi. i) = ¢ i
then Vielp. ¢
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Properties of Ig: Constructor-Style Induction

Fset
Flp———"PI¢

0 unary predicate on g
If Vo e F . (VieFsetz. ¢ i) = ¢ (ctor )
then Vielp. ¢
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Bottom line for Ig

Given a natural functor F, (lg, ctor: F Ig — Ig) satisfies:

ctor bijection ‘ I[F = the datatype of F‘

Iteration (Initial Algebra Property): For all (4,s:F A — A), there exists
a unique function iterg such that

F||: F iterg FA

Induction: Given any predicate ¢ on If

Vo eFlp. (VieFsetz. p i) = ¢ (ctor )

ViEh:.(pi
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Example of Datatype

Let B be a fixedset. FA={+*}+BxA
The shapes of F:  Left + Right (b,_) for each be B

Or, graphically: [

o, for each be B
Who is |7
Its elements have the form Right(by, ..., Right(b,,, Right (Left %)) ...)
l.e., essentially lists by ... D,

So I = Listp
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(+}+Bx A

ctor S

Ir A
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Bfixed FA={x}+BxA f=itery, If=Listg

Define: Nil = ctor (Left +) Cons(b, ¢) = ctor (Right (b,7))
SNE A = s (Left )  Cons”(b,a) = s (Right (b, a))

{*}+B><|F {*}+Bxf

{#s}+BxA

ctor S

Ir A

Ve eFlg. f(ctorz) =s((F f)x)
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Example of Datatype

Bfixed FA={+}+BxA f=iters Ig=Listg

Nil = ctor (Left ) Cons(b, %) = ctor (Right (b,17))

Define: Nil* = s (Left ) Cons™(b,a) = s (Right (b, a))
Bxle Sl BxA
Cons Cons™
Nil € I - AsNilA
FNil=Nil* | We obtain standard list iteration! |

Vbe B, iele. f(Cons(b,i)) = Cons™ (b, f i)

- List



Example of Datatype

Bfixed FA={#}+BxA If=Listg

Fset

Fle Ple

ctor

I

Vo e Flg. (VieFsetx. pi) = ¢ (ctor z)

Vielp. i

- List
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Bfixed FA={s}+BxA If=Listy

Left * —»g&, Right (b,i) —{z
() + B x|p 2 Rene 0~ Pl

ctor

l¢

Vo eFlg. (VieFsetz. p i) = ¢ (ctor x)

ViEh:.(pi

- List



Example of Datatype

Bfixed FA={s}+BxA If=Listy

Nil = ctor (Left x) Cons(b, ) = ctor (Right (b,7))

Left * —»g&, Right (b,i) —{z
() + B x|p 2 Rene 0~ Pl

ctor

l¢

Vo eFlg. (VieFsetz. p i) = ¢ (ctor x)

ViEh:.(pi

- List
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Nil = ctor (Left ) Cons(b,4) = ctor (Right (b,17))

Left + @, Right (b,i) ~{i
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ctor

© (ctor (Left *))
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ctor
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Bfixed FA={x}+BxA If=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))
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ctor
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Bfixed FA={x}+BxA If=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))

Left + @, Right (b,i)~{i
(o) 4 B xlp et 2 gt () () Pl

ctor

¢ Nil
®
Vbe B, i€lg. ¢ i= ¢ (ctor (Right (b,1)))

Vielg. pi

- List



Example of Datatype

Bfixed FA={#}+BxA Ig=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))

Left + &, Right (b,5) {i
(4} + Bxlp 272 RE0O20 _py

ctor

le

o Nil
Vbe B, i€lg. pi = (Cons(b,i))

Vielg. pi

- List



Example of Datatype

Bfixed FA={x}+BxA If=Listg

Nil = ctor (Left *) Cons(b, 1) = ctor (Right (b,14))

Left + @, Right (b,i)~{i
(o) 4 B xlp et 2 gt () () Pl

ctor

le

@ Nil ’Obtain standard list induction!‘
Vbe B, i€lg. i = (Cons(b,1i))

Vielg. pi

- List



Codatatypes = Final Coalgebras of BNFs
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Natural functor F : Set — Set

Copies of the shapes of F: H Vv o A ry
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Allow infinite couplings



Iterating Shape Composition Revisited

Natural functor F : Set — Set

Copies of the shapes of F: BV o A I
| /N /1IN

Put them together by plugging in shape for content slot
until there are no lingering slots left!

I,
I/ \A /‘\
:/ \: ‘

Define Jr = the set of all such (possibly) infinitary couplings
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/I\ F e

A &
/SN /IN
[ ] : v &
dtor | | ctor
&
AT,
/SN /I "
u : v ®

ctor and dtor are mutually inverse bijections

. Bijectivity



Properties of Jr: Bijectivity

Fy
R I W
/N :/\\

dtor | | ctor

A/L\#
_/ N :/\\_ Jr

ctor and dtor are mutually inverse bijections
A similar property holds for Jg, where we use the same notations
for constructor and destructor
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lr is embedded in Jg

Fl F Jr

dtor | | ctor dtor | | ctor

L = iterciorF Je—F Jg
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Properties of Jg: Coiteration

ay /cj;\ag /T\

fa [ az [ as

F A ~F J;
Ff
S ctor
[
Py
a / | \
far fas fas

a1, az,as are not “smaller” than a in any sense
But computation has made progress
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Q/I\A
N AR

ai a1,2 az1 G22 G23

s
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P

L)

A
N N

1

A
N N



FA

Properties of Jg

P

L) A
N N

s a = the seed encoding the
growth of the tree f a

/:\A

: Coiteration
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Properties of Jg: Coiteration

Given a natural functor F, (Jg, dtor: Jg > F Jg)

Coiteration (Final Coalgebra Property): For all (A,s: A - F A), there
exists a unique function coiterg with

F coiter

FA FJe

s dtor

coiterg

A JE

Jr = the codatatype of F
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The | to JF embedding revisited

F.

Fl F e

dtor | | ctor dtor | | ctor

2 - JF

¢t can be regarded as defined by
iteration on Ig but also by coiteration on Jg!

L = itercior = COItergior
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& &
A J2 J3 A Ja J3
N N
Jii 12 j{,l ji,z

Suffices:  j1 = J]
J2 = J3
3 = Js

: Coinduction
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Suffices:  ji1 =711, Ji2=J12
J2 = Ja
J3 :J;’z

: Coinduction



A
N

Suffices:

Properties of J¢

A/*\

N

J11 =711 J12=J12

J2 = Js
J3 =73

: Coinduction
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Properties of Jg: Coinduction

A : :
N N

If we can stay in the game indefinitely, then equality holds!
But how to show we can “stay in the game”?
By exhibiting a “strategy”

Suffices:  ji1 =711, J1.2=J12
J2 = Js
J3=1Js
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But First: Relators

A FA I
N
R Frel R
ry
N
B FB

Two elements of F A and F B are related by Frel R iff
they have the same shape



B

FA

Frel R

FB

But First

N

a1 a2 as

Fy

VLI

bl Z)Q ])_;

Two elements of F A and F B are related by Frel R iff

they have the same shape

and the contents from corresponding slots are related by R

: Relators



But First

A FA .
PR
aq a9 as
R Frel R
»
ELIRN
B FB bl Z)Q ])_;

Two elements of F A and F B are related by Frel R iff
they have the same shape

and the contents from corresponding slots are related by R
R aq b], R a9 b2, R as [);;

: Relators
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Relator Defined from Mapper

zZ=4&

SN

(a1,b1) (ag, b2) (a3, b3)

SN PERN

R relation between A and B, x € F A, yeF B

Frel R = y defined as
dzeF{(a,b)|Rab}.Fmiz=0xAFmaz=y
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Relators for the Running Examples

R relation between A and B
Frel R relation between F A and F B

FA=NxA FrelR(m,a) (n,b) < (m=n A Rab)

Frel Ruv <=
FA=N+A4 (In.u=v=_Leftn)v
(Ja,b.uw=Righta A v=Rightb A Rab)

Frel R (aq-as-...-ay) (by-ba-...-b,) <

Fa=tissd 5 i R b)
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Back to the “Strategy” for Proving Equality

JE J J’
dtor
& &
JIN I
FJe JuvJ2 J3 ]1 ]é JIB

Summary: to prove j = j’,

Given binary relation R on Jg

If Vj,j. Rjj' = Frel R (dtor j) (dtor j") ‘ R F-bisimulation
Then R is included in equality Vj, ;. Rjj = j=4'




Back to the “Strategy” for Proving Equality

JE J J'
dtor
» L)
I /N
FJp Ji1 o J2 J3 J1 Js  Js

Summary: to prove j = j’, find F-bisimulation R with R j j'
Given binary relation R on Jg

If Vj,j. Rjj' = Frel R (dtor j) (dtor j") ’R F-bisimulation
Then R is included in equality Vj,j'.Rjj = j=j
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Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:
dtor bijection

Coiteration (Final Coalgebra Property): For all (A,s: A —F A), there
exists a unique function coiter, with

F coiterg

FA—CFyp
s[ [dtor
A coiterg JF

Coinduction: Given any binary relation R on Jg

Vi, 5. Rjj" = Frel R (dtor j) (dtor j')
Vi,j"Rjj =j=J




Summary for Jg

Given a natural functor F, (Jg, dtor: Jg - F Jg) satisfies:

dtor bijection ‘JF = the codatatype of F‘

Coiteration (Final Coalgebra Property): For all (A,s: A —F A), there
exists a unique function coiterg with

F coiter
FA——=FJ
s[ [dtor

coiterg

A Jr

Coinduction: Given any binary relation R on Jg

Vi, 5. Rjj" = Frel R (dtor j) (dtor j')
Vi,j"Rjj =j=J
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Example of Codatatype

Let Bbeafixedsett FA=BxA

The shapes of F: (b, _) for each be B

Or, graphically: o foreach be B
Who is Jg?
Its elements have the form (b, (bo. ..., (b,, .
l.e., essentially streams by - by ... b, ...

So Jg = Streamp
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Bfixed FA=BxA f=coiter, Jf=Streamp

hd = 71 odtor tl = 7 o dtor

Define: , ,
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A f Jr
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Example of Codatatype: Stream

Bfixed FA=BxA f=coiter, Jr=Streamp

hd = 1 odtor tl = 9 o dtor

Define: hd? = M08 t = Ty 08
A ! I A ! I
" hd A hd
B A ! B

hd (f a) =hd? a ’ Standard stream coiteration

tl(fa)=f(t"a)




Example of Codatatype

Bfixed FA=BxA Jg = Streamp

Jr Jr
dtor dtor
F JF Frel R F JF

R is an F-bisimulation

Vi, i Rjj =j=7'

: Stream
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Bfixed FA=BxA Jg = Streamp
hd = 1 odtor tl = w9 o dtor

-JF JF

(hd,tl) (hd,tl)
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Example of Codatatype: Stream

Bfixed FA=BxA Jg = Streamp
hd = 1 odtor tl = w9 o dtor

-JF JF

(hd,tl) (hd,tl)

b,5),(b",5")) = b=b'AR j 5’
Bx J ((6,9),(0".3")) AR jj Bx Jp

Vi, Rjj ==hdj=hdj A R(tlj)(tlj)
Vi, Rjj ==j=7'
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Concrete Example of Coiteration

even : Streamp — Streamp
hd (even j) =hd j
tl (even j) = even (tl (tl 5))

odd : Streamp — Streamp
hd (odd j) = hd (tl j)
tl (odd j) = odd (tl (tl 7))

zip : Streamp x Streampg — Streamp
hd (zip (j1, j2)) = hd j1
tl (zip (41, j2)) = zip (J2, tl j1)
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zip (even j,odd j) = j
zip (odd j, even (tl (tlj))) =tlj hd (zip (even j,o0dd j)) =hd j
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Incremental Proof by Structural Coinduction

zip (even j,odd j) = j

zip (odd j, even (tl (tlj))) =tlj hd (zip (even j,o0dd j)) =hd j

zip (even (tl (tl 7)), odd (tl (tl j))) =tl (tlj) hd ...=hd (tlj)
Bisimulation: R j; jo =

j1 = zip (even j2,0dd ja) v
3j. j1 =zip (odd j, even (tl (t15))) A jo=tlj
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(Co)datatypes in Isabelle/HOL

Natural functors are a class of functors
containing the standard basic functors: sum, product, etc.
closed under the datatype and codatatype constructor

E.g.: fixing B, Listp is the datatype of A {*} + Bx A
but B ~ Listpg is also a natural functor
and similarly for B ~ Streamp

Nesting datatypes in codatatypes or vice versa
allows for modular specs of fancy data structures
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Universe of (Co)Datatypes in Isabelle/HOL

The Isabelle system maintains a database of natural functors
User can write high-level specifications:
codatatype Stream A = Cons (hd : A) (tl: List 4)

In the background:
e Isabelle parses this into a natural functor: B~ B x A

e Then infers high-level principles for (co)recursion and (co)induction
for Stream

o Finally, Stream is itself registered as a natural functor
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codatatype Tree A = Node A (Set;, (Tree A))
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Examples

datatype List A = Nil | Cons A (List A)
codatatype LazylList A = Nil | Cons A (List A)
datatype BTree A = Leaf A | Node (BTree A) (BTree A)

codatatype Tree A = Node A (PLUG_YOUR_OWN (Tree A))

possibly infinite-depths, infinitely branching unordered
A-labeled trees

e Show a set operator to be a bounded natural functor (BNF)
o Register it

e Then Isabelle will allow nesting it in (co)datatype expressions
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Summary

Datatypes and codatatypes have intuitive representations in terms of
Shape and Content

They form a rich, extendable universe

The proof assistant Isabelle/HOL represents this universe and makes it
available to the users with a lot of sugar to hide the category theory ®

Moreover, the abstract constructions have very concrete intuitions

The abstract reality can be very concrete
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Relevant Classes of Functors

Supernominal
(syntax with bindings)

Dependent Polynomial Accessible

- :

Indexed Container Quotient of Polynomial

/ LEAN (co)

datatypes
Avigad et al. ITP'19

(Infinitary) Analytic

Quotient Container

/

Polynomial Co.ql(co)datatypes
- gaining some
. compositionality
Container Tassi, ITP'19




Much more references to relevant literature
will be provided from the course website.
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